MathematicalFunctions - Maple Programming Help

Home : Support : Online Help : Mathematics : Special Functions : MathematicalFunctions : MathematicalFunctions/SearchFunction

MathematicalFunctions

 SearchFunction
 find the Maple routines related to a mathematical function

 Calling Sequence SearchFunction(math_function)

Parameters

 math_function - name; fragment or complete name of a mathematical function

Description

 • The SearchFunction(math_function) returns the matches of math_function against the names used in Maple to denominate the mathematical functions.
 • To obtain a description of the mathematical function use the FunctionAdvisor[describe] command.

Examples

 > $\mathrm{with}\left(\mathrm{MathematicalFunctions}\right)$
 $\left[{\mathrm{&Intersect}}{,}{\mathrm{&Minus}}{,}{\mathrm{&Union}}{,}{\mathrm{Assume}}{,}{\mathrm{Coulditbe}}{,}{\mathrm{Evalf}}{,}{\mathrm{Get}}{,}{\mathrm{Is}}{,}{\mathrm{SearchFunction}}{,}{\mathrm{Sequences}}{,}{\mathrm{Series}}\right]$ (1)
 > $\mathrm{SearchFunction}\left(\mathrm{bess}\right)$
 ${\mathrm{BesselI}}{,}{\mathrm{BesselJ}}{,}{\mathrm{BesselK}}{,}{\mathrm{BesselY}}$ (2)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{describe},\mathrm{BesselK}\right)$
 ${\mathrm{BesselK}}{=}{\mathrm{Modified Bessel function of the second kind}}$ (3)
 > $\mathrm{SearchFunction}\left(\mathrm{fres}\right)$
 ${\mathrm{FresnelC}}{,}{\mathrm{FresnelS}}{,}{\mathrm{Fresnelf}}{,}{\mathrm{Fresnelg}}$ (4)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{describe},\mathrm{FresnelS}\right)$
 ${\mathrm{FresnelS}}{=}{\mathrm{Fresnel sine integral}}$ (5)
 > $\mathrm{SearchFunction}\left(\mathrm{jac}\right)$
 ${\mathrm{JacobiP}}{,}{\mathrm{JacobiAM}}{,}{\mathrm{JacobiSN}}{,}{\mathrm{JacobiCN}}{,}{\mathrm{JacobiDN}}{,}{\mathrm{JacobiNS}}{,}{\mathrm{JacobiNC}}{,}{\mathrm{JacobiND}}{,}{\mathrm{JacobiSC}}{,}{\mathrm{JacobiCS}}{,}{\mathrm{JacobiSD}}{,}{\mathrm{JacobiDS}}{,}{\mathrm{JacobiCD}}{,}{\mathrm{JacobiDC}}{,}{\mathrm{JacobiTheta1}}{,}{\mathrm{JacobiTheta2}}{,}{\mathrm{JacobiTheta3}}{,}{\mathrm{JacobiTheta4}}{,}{\mathrm{JacobiZeta}}$ (6)
 > $\mathrm{FunctionAdvisor}\left(\mathrm{describe},\mathrm{JacobiAM}\right)$
 ${\mathrm{JacobiAM}}{=}{\mathrm{Jacobi amplitude function am}}$ (7)