LommelS1 - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


LommelS1

the Lommel function s

LommelS2

the Lommel function S

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

LommelS1(mu, nu, z)

LommelS2(mu, nu, z)

Parameters

mu

-

algebraic expression

nu

-

algebraic expression

z

-

algebraic expression

Description

• 

The LommelS1(mu, nu, z) function is defined in terms of the hypergeometric function

FunctionAdvisor( definition, LommelS1);

LommelS1a,b,z=za+1hypergeom1,32+b2+a2,32b2+a2,z24ab+1a+b+1,a+b10a+b+1032b2+a2::¬0,32+b2+a2::¬0,

(1)
  

and LommelS2(mu, nu, z) is defined in terms of LommelS1(mu, nu, z) and Bessel functions.

LommelS2(mu,nu,z) = convert(LommelS2(mu,nu,z), LommelS1);

LommelS2μ,ν,z=LommelS1μ,ν,z+2μ1Γμ2ν2+12Γμ2+ν2+12sinμνπ2BesselJν,zcosμνπ2BesselYν,z

(2)
• 

These functions solve the non-homogeneous linear differential equation of second order.

z^2*diff(f(z),`$`(z,2))+z*diff(f(z),z)+(z^2-nu^2)*f(z) = z^(mu+1);

z2ⅆ2ⅆz2fz+zⅆⅆzfz+ν2+z2fz=zμ+1

(3)
  

The Lommel functions also solve the following third order linear homogeneous differential equation with polynomial coefficients.

FunctionAdvisor( DE, LommelS1(mu,nu,z));

fz=LommelS1μ,ν,z,ⅆ3ⅆz3fz=μ2ⅆ2ⅆz2fzz+ν2z2+μⅆⅆzfzz2+μ1z2ν2μ+1fzz3

(4)

Examples

The AngerJ and WeberE, StruveH and StruveL functions can be viewed as particular cases of LommelS1.

FunctionAdvisorrelate,AngerJ,LommelS1

AngerJa,z=sinaπLommelS10,a,zaLommelS1−1,a,zπ

(5)

FunctionAdvisorrelate,WeberE,LommelS1

WeberEa,z=a1cosaπLommelS1−1,a,z+1cosaπLommelS10,a,zπ

(6)

FunctionAdvisorrelate,StruveH,LommelS1

StruveHa,z=2LommelS1a,a,zΓa+12π2a

(7)

FunctionAdvisorrelate,StruveL,LommelS1

StruveLa,z=2ILommelS1a,a,IzzaΓa+12π2Iza

(8)

A MeijerG representation for the Lommel functions.

LommelS1μ,ν,z=convertLommelS1μ,ν,z,MeijerG

LommelS1μ,ν,z=2μ1Γμ2+ν2+12Γμ2ν2+12MeijerGμ2+12,,μ2+12,ν2,ν2,z24

(9)

LommelS2μ,ν,z=convertLommelS2μ,ν,z,MeijerG

LommelS2μ,ν,z=MeijerGμ2+12,,μ2+12,ν2,ν2,,z242μ2Γμ2+ν2+12Γμ2ν2+12

(10)

The series expansion of the Lommel functions is not computable using the series command because it would involve factoring out abstract powers, leading to a result of the form z^mu1*series_1 + z^mu2*series_2 + .... This type of extended series expansion, however, can be computed using the Series command of the MathematicalFunctions package.

withMathematicalFunctions,Series

Series

(11)

SeriesLommelS1μ,ν,z,z,4

zμ11+μν1+μ+νz11+μνμν+31+μ+νμ+ν+3z3+Oz5,μ+ν::¬oddμν::¬odd

(12)

SeriesLommelS2μ,ν,z,z,4

zν4νΓμ2ν2+12Γμ2+ν2+12cscπνcosμνπ22μν2Γν+1184νΓμ2ν2+12Γμ2+ν2+12cscπνcosμνπ22μνΓν+2z2+Oz4+zνΓμ2ν2+12Γμ2+ν2+12cscπνcosπμ+ν22μν2Γν+1+18Γμ2ν2+12Γμ2+ν2+12cscπνcosπμ+ν22μνΓν+2z2+Oz4+zμ11+μν1+μ+νz11+μνμν+31+μ+νμ+ν+3z3+Oz5,ν::¬μ2ν2+12::¬0,μ2+ν2+12::¬0,μ2ν2+32::¬0,μ2+ν2+32::¬0,

(13)

References

  

Abramowitz, M., and Stegun, I., eds. Handbook of Mathematical Functions. New York: Dover publications.

  

Gradshteyn, and Ryzhik. Table of Integrals, Series and Products. 5th ed. Academic Press.

  

Luke, Y. The Special Functions and Their Approximations. Vol. 1 Chap. 6.

See Also

AngerJ

FunctionAdvisor

hypergeom

MathematicalFunctions

MeijerG

Struve Functions

WeberE