LinearAlgebra - Maple Programming Help

Home : Support : Online Help : Mathematics : Linear Algebra : LinearAlgebra Package : Queries : LinearAlgebra/Dimension

LinearAlgebra

 Dimension
 determine the dimension of a Matrix or a Vector
 RowDimension
 determine the row dimension of a Matrix
 ColumnDimension
 determine the column dimension of a Matrix

 Calling Sequence Dimension(A) RowDimension(A) ColumnDimension(A)

Parameters

 A - Matrix or Vector

Description

 • The Dimension(A) function, where A is a Vector, returns a non-negative integer that represents the number of elements in A.  If A is a Matrix, two non-negative integers representing the row dimension and the column dimension of A, respectively, are returned.
 Dimensions(A) is an alternate form for Dimension(A).
 • The RowDimension(A) function, where A is a Matrix, returns a non-negative integer that represents the number of rows in A.
 • The ColumnDimension(A) function, where A is a Matrix, returns a non-negative integer that represents the number of columns in A.
 • This function is part of the LinearAlgebra package, and so it can be used in the form Dimension(..) only after executing the command with(LinearAlgebra). However, it can always be accessed through the long form of the command by using LinearAlgebra[Dimension](..).

Examples

 > $\mathrm{with}\left(\mathrm{LinearAlgebra}\right):$
 > $V≔⟨x,y,z,w⟩$
 ${V}{≔}\left[\begin{array}{c}{x}\\ {y}\\ {z}\\ {w}\end{array}\right]$ (1)
 > $\mathrm{Dimension}\left(V\right)$
 ${4}$ (2)
 > $A≔\mathrm{IdentityMatrix}\left(3,5\right)$
 ${A}{≔}\left[\begin{array}{rrrrr}{1}& {0}& {0}& {0}& {0}\\ {0}& {1}& {0}& {0}& {0}\\ {0}& {0}& {1}& {0}& {0}\end{array}\right]$ (3)
 > $\mathrm{rowdim}≔\mathrm{RowDimension}\left(A\right)$
 ${\mathrm{rowdim}}{≔}{3}$ (4)
 > $\mathrm{coldim}≔\mathrm{ColumnDimension}\left(A\right)$
 ${\mathrm{coldim}}{≔}{5}$ (5)
 > $m,n≔\mathrm{Dimension}\left(A\right)$
 ${m}{,}{n}{≔}{3}{,}{5}$ (6)