 Ramp - Maple Help

DynamicSystems

 Ramp
 generate a ramp waveform Calling Sequence Ramp( ) Ramp(slope, t0, y0, opts) Parameters

 slope - (optional) algebraic; slope of ramp; default is 1 t0 - (optional) algebraic; delay to start of ramp; default is 0 y0 - (optional) algebraic; initial value; default is 0 opts - (optional) equation(s) of the form option = value; specify options for the Ramp command Options

 • discrete = truefalse

Specifies that the output is a Vector containing samples of the waveform. Elements of the Vector are samples of the waveform. The number of elements in the Vector is given by samplecount. The i-th element corresponds to a sample at time t=(i-1)*sampletime. The default is the value of discrete in DynamicSystems[SystemOptions].

 • samplecount = posint

Specifies the number of samples in the output Vector. It is used with the discrete option. The default is the value of samplecount in DynamicSystems[SystemOptions].

 • sampletime = positive

Specifies the time between samples in the output Vector. It is used with the discrete option. The default is the value of sampletime in DynamicSystems[SystemOptions]. Description

 • The Ramp command generates a ramp waveform.
 • By default, Ramp returns a piecewise expression representing a ramp. If the option discrete is assigned true, Ramp returns a Vector of data points.
 • The optional parameter slope specifies the slope of the ramp. Its default value is one.
 • The optional parameter t0 specifies the time of the start of the ramp. Its default value is zero.
 • The optional parameter y0 specifies the initial value. Its default value is zero. Examples

 > $\mathrm{with}\left(\mathrm{DynamicSystems}\right):$
 > $\mathrm{Ramp}\left(\right)$
 $\left\{\begin{array}{cc}{0}& {t}{<}{0}\\ {t}& {\mathrm{otherwise}}\end{array}\right\$ (1)
 > $\mathrm{Ramp}\left(k,\mathrm{t0},\mathrm{y0}\right)$
 $\left\{\begin{array}{cc}{\mathrm{y0}}& {t}{<}{\mathrm{t0}}\\ {\mathrm{y0}}{+}{k}{}\left({-}{\mathrm{t0}}{+}{t}\right)& {\mathrm{otherwise}}\end{array}\right\$ (2)
 > ${\mathrm{Ramp}\left(\mathrm{discrete}=\mathrm{true}\right)}^{\mathrm{%T}}$
 $\left[\begin{array}{cccccccccc}{0.}& {1.}& {2.}& {3.}& {4.}& {5.}& {6.}& {7.}& {8.}& {9.}\end{array}\right]$ (3)
 > $\mathrm{plot}\left(\mathrm{Ramp}\left(2,-1,-1\right),t=-3..3\right)$ 