Im - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Re

return the Real part of a complex-valued expression

Im

return the Imaginary part of a complex-valued expression

 

Calling Sequence

Parameters

Description

Thread Safety

Examples

Calling Sequence

Re(x)

x

Im(x)

x

Parameters

x

-

expression

Description

• 

The Re(x) calling sequence attempts to return the real part of x.

  

If x is a real extended numeric, then x is returned. If x is a complex extended numeric, then the real part of x is returned.

• 

The Im(x) function attempts to return the imaginary part of x.

  

If x is a real extended numeric, then 0 is returned. If x is a complex extended numeric, then the imaginary part of x is returned.

  

You can enter the commands Re and Im using their 1-D or 2-D calling sequences. For example, Re(3+4*I) is equivalent to 3+4I.

• 

If x includes a function f, then Re(x) and Im(x) attempt to execute the procedures `Re/f` and `Im/f` to determine the real and imaginary parts of the corresponding part of x.

  

By this method, the functionality of these commands can be extended. For example, Re(sin(3+4*I)*ln(3+4*I)) executes the procedures `Re/sin`, `Im/sin`, `Re/ln`, and `Im/ln`.

• 

To specify that unknown variables should be assumed to represent real values, use the assume or the evalc command.

Thread Safety

• 

The Re and Im commands are thread-safe as of Maple 15.

• 

For more information on thread safety, see index/threadsafe.

Examples

x

x

(1)

xy

xy

(2)

assumez,real

xy+z

z~+xy

(3)

xz

z~x

(4)

π+Iexp1

π

(5)

cosh3+4I

cosh3cos4

(6)

cosh3+4I

sinh3sin4

(7)

expI

sin1

(8)

ln1

Iπ

(9)

ln1

π

(10)

polar3,π7

3sinπ7

(11)

polarexpx+4I

ⅇxcosargⅇx+4I

(12)

evalc

ⅇxcos4

(13)

See Also

assume

complex

evalc

float

numeric_type

RealDomain