sin, cos, ... - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Conversions : Function : trig

sin, cos, ...

The Trigonometric functions

sinh, cosh, ...

The Hyperbolic functions

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

sin(x)    cos(x)    tan(x)

sec(x)    csc(x)    cot(x)

sinh(x)   cosh(x)   tanh(x)

sech(x)   csch(x)   coth(x)

Parameters

x

-

expression

Description

• 

Arguments for all trigonometric functions

cosecant

cosine

cotangent

secant

sine

tangent

  

and hyperbolic functions

csch

cosh

coth

sech

sinh

tanh

  

must be given in radians.  (1 radian = 180/Pi degrees).

• 

Maple also provides simplification and expansion procedures that apply most of the common trigonometric and hyperbolic identities. Also available are conversion routines that will convert trigonometric expressions to other forms. Three examples are that (1) any trigonometric expression can be converted to an expression in terms of only sin and cos, (2) expressions involving exp(x) can be converted to their hyperbolic forms, and (3) a trigonometric function with an argument of the form qπ, where q is a rational, can in some cases be converted to radical form. For more help, see convert.

• 

For information about expanding and simplifying trigonometric expressions, see expand, factor, combine[trig], and simplify[trig].

Examples

Evaluating trigonometric expressions.

sin0

0

(1)

cosπ3

12

(2)

secπ3

2

(3)

coth3.1+2.5I

1.001144421+0.003896610899I

(4)

sin7π60

sin760π

(5)

rconvert,'radical'

r:=183+185511625+13+11625+1

(6)

evalf

0.3583679496

(7)

Expanding and simplifying trigonometric functions.

simplifysinx2+cosx2,trig

1

(8)

expandsinx+y

sinxcosy+cosxsiny

(9)

combine,trig

sinx+y

(10)

Other operations involving trigonometric functions.

converttanhx,exp

ⅇxⅇxⅇx+ⅇx

(11)

Dtan

tan2+1

(12)

∫secxⅆx

lnsecx+tanx

(13)

solvecscx=1,x

12π

(14)

disconttanx+π2,x

π_Z1~

(15)

See Also

combine[trig]

convert

discont

expand

factor

initialfunctions

invfunc

invtrig

RealDomain

simplify[trig]

solve

type[trig]

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam