FunctionAdvisor - Maple Programming Help

Online Help

All Products    Maple    MapleSim

Home : Support : Online Help : Mathematics : FunctionAdvisor : FunctionAdvisor

FunctionAdvisor

provide information on mathematical functions in general

 Calling Sequence FunctionAdvisor() FunctionAdvisor(topics, quiet) FunctionAdvisor(Topic, function, quiet, opts)

Parameters

 topics - literal name; 'topics'; specify that the FunctionAdvisor command return the topics for which information is available quiet - (optional) literal name; 'quiet'; specify that only the computational result in Maple syntax is returned Topic - (optional) name; FunctionAdvisor topic function - name; mathematical function or function class. For some topics, you can specify multiple mathematical functions opts - (optional) topic-specific options

Description

 • The FunctionAdvisor() command returns basic instructions for the use of the FunctionAdvisor function.
 • The FunctionAdvisor(topics) command returns the list of available FunctionAdvisor topics.
 • The FunctionAdvisor(function) command returns a summary of information related to the function function.
 • The FunctionAdvisor(Topic, function) command returns information related to the topic Topic for the function function.
 • The requirement concerning mathematical functions is not just computational. Typically, you need supporting information on definitions, identities, possible simplifications, integral forms, different types of series expansions, and mathematical properties in general. This information is in handbooks of mathematical functions like the one by Abramowitz and Stegun. You can now access this information directly from Maple, using the routines in the MathematicalFunctions package and the FunctionAdvisor command. This command is particularly useful when studying, teaching, and solving problems where mathematical function properties are relevant.
 • Using the FunctionAdvisor command, you can access mathematical language information easily that is both readable and directly usable in Maple mathematical computations. The FunctionAdvisor command provides information on the following topics.

 The FunctionAdvisor command provides information on the following mathematical functions.

 Like the conversion facility for mathematical functions, the FunctionAdvisor command also works with the concept of function classes and considers assumptions on the function parameters, if any. The FunctionAdvisor command provides information on the following function classes.

 • The FunctionAdvisor command can be considered to be between a help and a computational special function facility. Due to the wide range of information this command can handle and in order to facilitate its use, it includes two distinctive features:
 – If you call the FunctionAdvisor command without arguments, it returns information that you can follow until the appropriate information displays.
 – If you call the FunctionAdvisor command with a topic or function misspelled, but a match exists, it returns the information with a warning message.
 You do not have to remember the exact Maple name of each mathematical function or the FunctionAdvisor topic. However, to avoid these messages and all FunctionAdvisor verbosity, specify the optional argument quiet when calling the FunctionAdvisor command from another routine.

Examples

The following example uses the FunctionAdvisor command with no arguments specified.

 > $\mathrm{FunctionAdvisor}\left(\right)$
 The usage is as follows:     > FunctionAdvisor( topic, function, ... ); where 'topic' indicates the subject on which advice is required, 'function' is the name of a Maple function, and '...' represents possible additional input depending on the 'topic' chosen. To list the possible topics:     > FunctionAdvisor( topics ); A short form usage,     > FunctionAdvisor( function ); with just the name of the function is also available and displays a summary of information about the function.
 > $\mathrm{FunctionAdvisor}\left(\mathrm{topics}\right)$
 The topics on which information is available are:
 $\left[{\mathrm{DE}}{,}{\mathrm{analytic_extension}}{,}{\mathrm{asymptotic_expansion}}{,}{\mathrm{branch_cuts}}{,}{\mathrm{branch_points}}{,}{\mathrm{calling_sequence}}{,}{\mathrm{class_members}}{,}{\mathrm{classify_function}}{,}{\mathrm{definition}}{,}{\mathrm{describe}}{,}{\mathrm{differentiation_rule}}{,}{\mathrm{function_classes}}{,}{\mathrm{identities}}{,}{\mathrm{integral_form}}{,}{\mathrm{known_functions}}{,}{\mathrm{periodicity}}{,}{\mathrm{plot}}{,}{\mathrm{relate}}{,}{\mathrm{required_assumptions}}{,}{\mathrm{series}}{,}{\mathrm{singularities}}{,}{\mathrm{special_values}}{,}{\mathrm{specialize}}{,}{\mathrm{sum_form}}{,}{\mathrm{symmetries}}{,}{\mathrm{synonyms}}{,}{\mathrm{table}}\right]$ (1)

To avoid all FunctionAdvisor verbosity, specify the optional argument quiet.

 > $\mathrm{FunctionAdvisor}\left(\mathrm{function_classes},\mathrm{quiet}\right)$
 $\left[{\mathrm{trig}}{,}{\mathrm{trigh}}{,}{\mathrm{arctrig}}{,}{\mathrm{arctrigh}}{,}{\mathrm{elementary}}{,}{\mathrm{GAMMA_related}}{,}{\mathrm{Psi_related}}{,}{\mathrm{Kelvin}}{,}{\mathrm{Airy}}{,}{\mathrm{Hankel}}{,}{\mathrm{Bessel_related}}{,}{\mathrm{0F1}}{,}{\mathrm{orthogonal_polynomials}}{,}{\mathrm{Ei_related}}{,}{\mathrm{erf_related}}{,}{\mathrm{Kummer}}{,}{\mathrm{Whittaker}}{,}{\mathrm{Cylinder}}{,}{\mathrm{1F1}}{,}{\mathrm{Elliptic_related}}{,}{\mathrm{Legendre}}{,}{\mathrm{Chebyshev}}{,}{\mathrm{2F1}}{,}{\mathrm{Lommel}}{,}{\mathrm{Struve_related}}{,}{\mathrm{hypergeometric}}{,}{\mathrm{Jacobi_related}}{,}{\mathrm{InverseJacobi_related}}{,}{\mathrm{Elliptic_doubly_periodic}}{,}{\mathrm{Weierstrass_related}}{,}{\mathrm{Zeta_related}}{,}{\mathrm{complex_components}}{,}{\mathrm{piecewise_related}}{,}{\mathrm{Other}}{,}{\mathrm{Bell}}{,}{\mathrm{Heun}}{,}{\mathrm{trigall}}{,}{\mathrm{arctrigall}}{,}{\mathrm{integral_transforms}}\right]$ (2)

The type of information that the FunctionAdvisor command returns general information, for example, "the Maple names for the Bessel functions",

 > $\mathrm{FunctionAdvisor}&Ap$