Application Center - Maplesoft

App Preview:

Finite Excluded and Included Point Topologies with Maple

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application




Finite Excluded and Included Point Topologies


Taha Guma el turki

Department of Mathematics, Faculty of Science, University of Benghazi, Libya

E-mail: Taha1978_2002@yahoo.com

 

 

In this application we will compute new issues related to Finite Topological Spaces. The new procedures are :
(1) A procedure to generate Excluded point topology. "GeneratExcT(n,m)".
(2) A procedure to Check if a given topology is Excluded point topology or not "CheckExcluded(X,T)".
(3) A procedure to find the number of proper open sets in a given excluded point topology. "NumberofPOinExcluded(X,T)".
(4) A procedure to find all excluded point topologies over a given set. "AllExcludedPointTopologies(X)".
(5) A procedure to generate included point topology. "GeneratIncT(n,m)".
(6) A procedure to check if a given topology is included point topology or not. "CheckIncluded(X,T)".
(7) A procedure to find the number of proper open sets in a given included point topology. "NumberofPOinIncluded(X,T)".
(8) A procedure to find all included point topologies over a given set. "AllincludedPointTopologies(X,T)".


Notes: In procedures (1) and (5) the arguments n and m refer to the number of the set elements and "the order of the point which we want to exclude or include" respectively and these two numbers must satisfy that m<=n .

 

KeyWords: Excluded point topology, Included point topology

restart;
with(combinat):

 

#(1) A procedure to generate Excluded point topology.
GeneratExcT:=proc(n,m)
local i,x,X,EXT,EXP;
if m<=n then
X:={seq(x[i],i=1..n)};
EXP:=x[m];
print(`The excluded point is`,x[m],`.And the excluded point topology is:`);
EXT:=powerset(X minus {EXP}) union {X};
else print(`false entries`);
fi;
end:

#########################~~~~~~##################################################################################;

#(2) A procedure to Check if a given topology is Excluded point topology or not .
CheckExcluded:=proc(X,T)
local x,C;
C:={};
for x in X do
if T=combinat:-powerset(X minus {x}) union {X} then C:=C union {x};else C:=C;
end if;
od;
if nops(C)=1 then  print(`True The given topology is excluded  point topology and the excluded point is `,op(C)); else false;
end if;
end:

########################~~~~~~~~~##########################~~~~~~~~~~############################################;

#(3) A procedure to find the number of proper open sets in a given excluded point topology.

NumberofPOinExcluded:=proc(X,EXT)
print(`The number of proper open sets in the given excluded  point topology is`,nops(EXT)- 2,`over a set with`,nops(X),`points`);
end:

########################~~~~~~~~~##########################~~~~~~~~~~############################################;

#(4) A procedure to find all excluded point topologies over a given  set.

AllExcludedPointTopologies:=proc(X)

local x,CountEx;
CountEx:={};
for x in X do
CountEx:={powerset(X minus {x}) union {X} } union CountEx;
od;
CountEx;
end:

##########~~~~~~~#############################~~~~~~~##################################~~~~~~#########;

#(5) A procedure to generate included point topology.
GeneratIncT:=proc(n,m)
local cc,i,T1,XX;
if m<=n then
XX:={seq(x[i],i=1..n)};
cc:={x[m]};
print(`The included point is`,x[m],`.And the included point topology is:`);
T1:=map(`union`,powerset(XX),cc) union {{}};
else print(`false entries`);
T1;XX;
fi;
end:
########################~~~~~~~~~##########################~~~~~~~~~~############################################;

#(6) A procedure to check if a given topology is included point topology or not.
CheckIncluded:=proc(X,T)
local x,C;C:={};
for x in X do
if T=map(`union`,combinat:-powerset(X),{x}) union {{}} then C:=C union {x} ;else C:=C;
end if;
od;
C;
if nops(C)=1 then print(`True The given topology is included point topology and the included point is`,op(C));else false;
end if;
end:

#(7) A procedure to find the number of proper open sets in  a given included point topology.

NumberofPOinIncluded:=proc(X,T)
print(`The number of proper open sets in the given included  point topology is`,nops(T)- 2,`over a set with`,nops(X),`points`);
end:

#(8) A procedure to find all included point topologies over a given set.

AllincludedPointTopologies:=proc(X)

local x,Countinc;
Countinc:={};
for x in X do
Countinc:={map(`union`,powerset(X),{x}) union {{}}} union Countinc;
od;
Countinc;
end:


GeneratExcT(7,2);

`The excluded point is`, x[2], `.And the excluded point topology is:`

{{}, {x[1]}, {x[3]}, {x[4]}, {x[5]}, {x[6]}, {x[7]}, {x[1], x[3]}, {x[1], x[4]}, {x[1], x[5]}, {x[1], x[6]}, {x[1], x[7]}, {x[3], x[4]}, {x[3], x[5]}, {x[3], x[6]}, {x[3], x[7]}, {x[4], x[5]}, {x[4], x[6]}, {x[4], x[7]}, {x[5], x[6]}, {x[5], x[7]}, {x[6], x[7]}, {x[1], x[3], x[4]}, {x[1], x[3], x[5]}, {x[1], x[3], x[6]}, {x[1], x[3], x[7]}, {x[1], x[4], x[5]}, {x[1], x[4], x[6]}, {x[1], x[4], x[7]}, {x[1], x[5], x[6]}, {x[1], x[5], x[7]}, {x[1], x[6], x[7]}, {x[3], x[4], x[5]}, {x[3], x[4], x[6]}, {x[3], x[4], x[7]}, {x[3], x[5], x[6]}, {x[3], x[5], x[7]}, {x[3], x[6], x[7]}, {x[4], x[5], x[6]}, {x[4], x[5], x[7]}, {x[4], x[6], x[7]}, {x[5], x[6], x[7]}, {x[1], x[3], x[4], x[5]}, {x[1], x[3], x[4], x[6]}, {x[1], x[3], x[4], x[7]}, {x[1], x[3], x[5], x[6]}, {x[1], x[3], x[5], x[7]}, {x[1], x[3], x[6], x[7]}, {x[1], x[4], x[5], x[6]}, {x[1], x[4], x[5], x[7]}, {x[1], x[4], x[6], x[7]}, {x[1], x[5], x[6], x[7]}, {x[3], x[4], x[5], x[6]}, {x[3], x[4], x[5], x[7]}, {x[3], x[4], x[6], x[7]}, {x[3], x[5], x[6], x[7]}, {x[4], x[5], x[6], x[7]}, {x[1], x[3], x[4], x[5], x[6]}, {x[1], x[3], x[4], x[5], x[7]}, {x[1], x[3], x[4], x[6], x[7]}, {x[1], x[3], x[5], x[6], x[7]}, {x[1], x[4], x[5], x[6], x[7]}, {x[3], x[4], x[5], x[6], x[7]}, {x[1], x[3], x[4], x[5], x[6], x[7]}, {x[1], x[2], x[3], x[4], x[5], x[6], x[7]}}

(1)

X:={a,b,c,d};

{a, b, c, d}

(2)

T:={{},{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c},X};

 

{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, c, d}}

(3)

CheckExcluded(X,T);

`True The given topology is excluded  point topology and the excluded point is `, d

(4)

NumberofPOinExcluded(X,T);

`The number of proper open sets in the given excluded  point topology is`, 7, `over a set with`, 4, points

(5)

AllExcludedPointTopologies(X);

{{{}, {a}, {b}, {c}, {a, b}, {a, c}, {b, c}, {a, b, c}, {a, b, c, d}}, {{}, {a}, {b}, {d}, {a, b}, {a, d}, {b, d}, {a, b, d}, {a, b, c, d}}, {{}, {a}, {c}, {d}, {a, c}, {a, d}, {c, d}, {a, c, d}, {a, b, c, d}}, {{}, {b}, {c}, {d}, {b, c}, {b, d}, {c, d}, {b, c, d}, {a, b, c, d}}}

(6)

###############################################################################################################.
GeneratIncT(5,3);

`The included point is`, x[3], `.And the included point topology is:`

{{}, {x[3]}, {x[1], x[3]}, {x[2], x[3]}, {x[3], x[4]}, {x[3], x[5]}, {x[1], x[2], x[3]}, {x[1], x[3], x[4]}, {x[1], x[3], x[5]}, {x[2], x[3], x[4]}, {x[2], x[3], x[5]}, {x[3], x[4], x[5]}, {x[1], x[2], x[3], x[4]}, {x[1], x[2], x[3], x[5]}, {x[1], x[3], x[4], x[5]}, {x[2], x[3], x[4], x[5]}, {x[1], x[2], x[3], x[4], x[5]}}

(7)

X:={a,b,c,d,e};

{a, b, c, d, e}

(8)

T:={{},{a},{a,b},{a,c},{a,d},{a,e},{a,b,c},{a,b,d},{a,b,e},{a,d,e},{a,c,e},{a,c,d},{a,b,c,d},{a,b,c,e},{a,c,d,e},{a,b,d,e},X};

{{}, {a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {a, b, c, d, e}}

(9)

 

CheckIncluded(X,T);

`True The given topology is included point topology and the included point is`, a

(10)

NumberofPOinIncluded(X,T);
AllincludedPointTopologies(X);

`The number of proper open sets in the given included  point topology is`, 15, `over a set with`, 5, points

{{{}, {a}, {a, b}, {a, c}, {a, d}, {a, e}, {a, b, c}, {a, b, d}, {a, b, e}, {a, c, d}, {a, c, e}, {a, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {a, b, c, d, e}}, {{}, {b}, {a, b}, {b, c}, {b, d}, {b, e}, {a, b, c}, {a, b, d}, {a, b, e}, {b, c, d}, {b, c, e}, {b, d, e}, {a, b, c, d}, {a, b, c, e}, {a, b, d, e}, {b, c, d, e}, {a, b, c, d, e}}, {{}, {c}, {a, c}, {b, c}, {c, d}, {c, e}, {a, b, c}, {a, c, d}, {a, c, e}, {b, c, d}, {b, c, e}, {c, d, e}, {a, b, c, d}, {a, b, c, e}, {a, c, d, e}, {b, c, d, e}, {a, b, c, d, e}}, {{}, {d}, {a, d}, {b, d}, {c, d}, {d, e}, {a, b, d}, {a, c, d}, {a, d, e}, {b, c, d}, {b, d, e}, {c, d, e}, {a, b, c, d}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, {a, b, c, d, e}}, {{}, {e}, {a, e}, {b, e}, {c, e}, {d, e}, {a, b, e}, {a, c, e}, {a, d, e}, {b, c, e}, {b, d, e}, {c, d, e}, {a, b, c, e}, {a, b, d, e}, {a, c, d, e}, {b, c, d, e}, {a, b, c, d, e}}}

(11)

#Example(2)
Y:={1,2,3}; TY:=powerset(Y);

{1, 2, 3}

{{}, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

(12)

CheckExcluded(Y,TY);

false

(13)

CheckIncluded(Y,TY);

false

(14)

NULL

NULL

GeneratIncT(6,6);

`The included point is`, x[6], `.And the included point topology is:`

{{}, {x[6]}, {x[1], x[6]}, {x[2], x[6]}, {x[3], x[6]}, {x[4], x[6]}, {x[5], x[6]}, {x[1], x[2], x[6]}, {x[1], x[3], x[6]}, {x[1], x[4], x[6]}, {x[1], x[5], x[6]}, {x[2], x[3], x[6]}, {x[2], x[4], x[6]}, {x[2], x[5], x[6]}, {x[3], x[4], x[6]}, {x[3], x[5], x[6]}, {x[4], x[5], x[6]}, {x[1], x[2], x[3], x[6]}, {x[1], x[2], x[4], x[6]}, {x[1], x[2], x[5], x[6]}, {x[1], x[3], x[4], x[6]}, {x[1], x[3], x[5], x[6]}, {x[1], x[4], x[5], x[6]}, {x[2], x[3], x[4], x[6]}, {x[2], x[3], x[5], x[6]}, {x[2], x[4], x[5], x[6]}, {x[3], x[4], x[5], x[6]}, {x[1], x[2], x[3], x[4], x[6]}, {x[1], x[2], x[3], x[5], x[6]}, {x[1], x[2], x[4], x[5], x[6]}, {x[1], x[3], x[4], x[5], x[6]}, {x[2], x[3], x[4], x[5], x[6]}, {x[1], x[2], x[3], x[4], x[5], x[6]}}

(15)

GeneratIncT(1,1);

`The included point is`, x[1], `.And the included point topology is:`

{{}, {x[1]}}

(16)

GeneratIncT(5,5);

`The included point is`, x[5], `.And the included point topology is:`

{{}, {x[5]}, {x[1], x[5]}, {x[2], x[5]}, {x[3], x[5]}, {x[4], x[5]}, {x[1], x[2], x[5]}, {x[1], x[3], x[5]}, {x[1], x[4], x[5]}, {x[2], x[3], x[5]}, {x[2], x[4], x[5]}, {x[3], x[4], x[5]}, {x[1], x[2], x[3], x[5]}, {x[1], x[2], x[4], x[5]}, {x[1], x[3], x[4], x[5]}, {x[2], x[3], x[4], x[5]}, {x[1], x[2], x[3], x[4], x[5]}}

(17)

GeneratExcT(1,1);

`The excluded point is`, x[1], `.And the excluded point topology is:`

{{}, {x[1]}}

(18)

GeneratExcT(3,6);

`false entries`

(19)

NULL

NULL