Application Center - Maplesoft

App Preview:

Classroom Tips and Techniques: Stepwise Solution of a Trig Equation

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

 

Classroom Tips and Techniques: Stepwise Solution of a Trig Equation 

 

Robert J. Lopez 

Emeritus Professor of Mathematics and Maple Fellow 

Maplesoft 

 

Introduction 

 

Not long ago, I was asked how the "Equation Manipulator" could be used to provide a stepwise solution of the equation Typesetting:-mrow(Typesetting:-mi(, where Typesetting:-mrow(Typesetting:-mi( is given by 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`+`(`*`(`+`(1.22, `*`(1.7, `*`(cos(x)))), `*`(sin(x))), `-`(1.10025))
 

>
 

The "Equation Manipulator" is the tool that pops up when "Manipulate Equation" is selected in the Context Menu for an equation.  For example, making this selection for the equation 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`+`(`*`(3, `*`(x)), 5) = `+`(`*`(5, `*`(x)), `-`(7))
 

>
 

leads to Figure 1, where we have implemented the complete stepwise solution.  The drop-down box labeled "Add" provides the negative of the terms Maple sees in the equation.  The results of adding Typesetting:-mrow(Typesetting:-mo( and Typesetting:-mrow(Typesetting:-mo(and multiplying by Typesetting:-mrow(Typesetting:-mo( are shown in Figure 1.  Note the "Undo" button on the left, and the "Return Steps" button on the bottom. 

 

Image 

Figure 1   The equation Typesetting:-mrow(Typesetting:-mn( solved stepwise with the "Equation Manipulator" 

 

Figure 2 shows what is returned when the "Return Steps" button is pressed. 

 

 

 

 

`+`(`*`(3, `*`(x)), 5) = `+`(`*`(5, `*`(x)), `-`(7))
`+`(`*`(3, `*`(x))) = `+`(`*`(5, `*`(x)), `-`(12))
`+`(`-`(`*`(2, `*`(x)))) = -12
x = 6
 

Figure 2   Stepwise solution of Typesetting:-mrow(Typesetting:-mo( returned by the "Equation Manipulator" 

 

Not all the steps in the manual solution of the given trig equation can be performed in the "Equation Manipulator."  Hence, we will show how a stepwise solution of this solution can be obtained in a syntax-free manner. 

 

>
 

Preliminary Investigations 

 

Figure 3 shows a graph of the left-hand side of the equation, suggesting that there are two solutions in the interval Typesetting:-mrow(Typesetting:-mn(and an infinite number of solutions on the real line. 

 

> Typesetting:-mrow(Typesetting:-mo(
 

Plot_2d
 

Figure 3   Graph of Typesetting:-mrow(Typesetting:-mi( for the trig equation Typesetting:-mrow(Typesetting:-mi(. 

>
 

Maple provides solutions in several ways.  For example, the solve command immediately yields 

 

> Typesetting:-mrow(Typesetting:-mo(
 

.4067036720, 1.639750453, `+`(`-`(2.594023389), `-`(`*`(.8006857633, `*`(I)))), `+`(`-`(2.594023389), `*`(.8006857633, `*`(I))) (2.1)
 

>
 

Because Typesetting:-mrow(Typesetting:-mi( contains floating-point numbers, the solve command generates numeric solutions, and these include the two real solutions Figure 3 suggests lie in the interval Typesetting:-mrow(Typesetting:-mfenced(Typesetting:-mrow(Typesetting:-mn(  The Context Menu applied to the equation Typesetting:-mrow(Typesetting:-mi( leads to the same results if the Solve option "Obtain Solutions for Typesetting:-mrow(Typesetting:-mi(" is selected. 

 

>
 

Stepwise Solution of the Trig Equation 

 

>
 

Enter the equation Typesetting:-mrow(Typesetting:-mi( 

Typesetting:-mrow(Typesetting:-mi( 

`+`(`*`(`+`(1.22, `*`(1.7, `*`(cos(x)))), `*`(sin(x))), `-`(1.10025)) = 0 (3.1)
 

Add Typesetting:-mrow(Typesetting:-mn( to both sides 

Typesetting:-mrow(Typesetting:-mo( 

`*`(`+`(1.22, `*`(1.7, `*`(cos(x)))), `*`(sin(x))) = 1.10025 (3.2)
 

Use the evaluation template from the Expression Palette to  

make the substitution Typesetting:-mrow(Typesetting:-mi( 

Typesetting:-mrow(Typesetting:-mo( 

`*`(`+`(1.22, `*`(1.7, `*`(cos(x)))), `*`(`^`(`+`(1, `-`(`*`(`^`(cos(x), 2)))), `/`(1, 2)))) = 1.10025 (3.3)
 

Using the Context Menu, bring the resulting equation into the "Equation Manipulator". 

 

Square both sides. 

 

Add Typesetting:-mrow(Typesetting:-mo( to both sides. 

 

Expand the parentheses. 

 

Press "Return Steps" button. 

 

Via the Context Menu, select the left-hand side of the equation. 

 

Via the Context Menu, factor this left-hand side of the equation. 

Typesetting:-mrow(Typesetting:-mo( 

`*`(`+`(1.22, `*`(1.7, `*`(cos(x)))), `*`(`^`(`+`(1, `-`(`*`(`^`(cos(x), 2)))), `/`(1, 2)))) = 1.10025
 

Typesetting:-mover(Typesetting:-mo( 

 

 

 

`*`(`+`(1.22, `*`(1.7, `*`(cos(x)))), `*`(`^`(`+`(1, `-`(`*`(`^`(cos(x), 2)))), `/`(1, 2)))) = 1.10025
`*`(`^`(`+`(1.22, `*`(1.7, `*`(cos(x)))), 2), `*`(`+`(1, `-`(`*`(`^`(cos(x), 2)))))) = 1.210550062
`+`(`*`(`^`(`+`(1.22, `*`(1.7, `*`(cos(x)))), 2), `*`(`+`(1, `-`(`*`(`^`(cos(x), 2)))))), `-`(1.210550062)) = 0
`+`(.277849938, `*`(1.4016, `*`(`^`(cos(x), 2))), `*`(4.148, `*`(cos(x))), `-`(`*`(4.148, `*`(`^`(cos(x), 3)))), `-`(`*`(2.89, `*`(`^`(cos(x), 4))))) = 0
`+`(.277849938, `*`(1.4016, `*`(`^`(cos(x), 2))), `*`(4.148, `*`(cos(x))), `-`(`*`(4.148, `*`(`^`(cos(x), 3)))), `-`(`*`(2.89, `*`(`^`(cos(x), 4))))) = 0
 

Typesetting:-mover(Typesetting:-mo( 

`+`(.277849938, `*`(1.4016, `*`(`^`(cos(x), 2))), `*`(4.148, `*`(cos(x))), `-`(`*`(4.148, `*`(`^`(cos(x), 3)))), `-`(`*`(2.89, `*`(`^`(cos(x), 4)))))
`+`(.277849938, `*`(1.4016, `*`(`^`(cos(x), 2))), `*`(4.148, `*`(cos(x))), `-`(`*`(4.148, `*`(`^`(cos(x), 3)))), `-`(`*`(2.89, `*`(`^`(cos(x), 4)))))
 

Typesetting:-mover(Typesetting:-mo( 

`+`(`-`(`*`(2.89, `*`(`+`(cos(x), 0.6889949682e-1), `*`(`+`(cos(x), `-`(.9184297850)), `*`(`+`(`*`(`^`(cos(x), 2)), `*`(2.284824406, `*`(cos(x))), 1.519324188)))))))
`+`(`-`(`*`(2.89, `*`(`+`(cos(x), 0.6889949682e-1), `*`(`+`(cos(x), `-`(.9184297850)), `*`(`+`(`*`(`^`(cos(x), 2)), `*`(2.284824406, `*`(cos(x))), 1.519324188)))))))
 

Copy the first factor (linear in Typesetting:-mrow(Typesetting:-mi(), set it equal to zero, and use the Context Menu to solve for Typesetting:-mrow(Typesetting:-mi( 

Typesetting:-mrow(Typesetting:-mi( 

`+`(cos(x), 0.6889949682e-1) = 0
 

Typesetting:-mover(Typesetting:-mo( 

{x = 1.639750453}
 

Copy the second factor (linear in Typesetting:-mrow(Typesetting:-mi(), set it equal to zero, and use the Context Menu to solve for Typesetting:-mrow(Typesetting:-mi( 

Typesetting:-mrow(Typesetting:-mi( 

`+`(cos(x), `-`(.9184297850)) = 0
 

Typesetting:-mover(Typesetting:-mo( 

{x = .4067036718}
 

Copy the factor quadratic in Typesetting:-mrow(Typesetting:-mi( and use the Plot Builder to sketch Figure 4. 

Typesetting:-mrow(Typesetting:-msup(Typesetting:-mrow(Typesetting:-mi( 

`+`(`*`(`^`(cos(x), 2)), `*`(2.284824406, `*`(cos(x))), 1.519324188) (3.4)
 

 

The graph in Figure 4 has been obtained via the plot command, but could easily be obtained with the Plot Builder accessed through the Context Menu.  The figure shows that the factor quadratic in Typesetting:-mrow(Typesetting:-mi( contributes no real solutions to the solution set of the given trig equation. 

 

> Typesetting:-mrow(Typesetting:-mo(
 

Plot_2d
 

Figure 4   Graph of factor quadratic in Typesetting:-mrow(Typesetting:-mi( 

>
 

In Pursuit of an Exact Solution 

 

While writing the previous sections, it seemed like a good idea to convert the equation to have rational coefficients, and to articulate the steps of the solution in exact arithmetic.  Thus, write Typesetting:-mrow(Typesetting:-mi( as 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`+`(`*`(`+`(`/`(61, 50), `*`(`/`(17, 10), `*`(cos(x)))), `*`(sin(x))), `-`(`/`(4401, 4000))) (4.1)
 

>
 

and to the equation 

 

> Typesetting:-mrow(Typesetting:-mi(
 

`+`(`*`(`+`(`/`(61, 50), `*`(`/`(17, 10), `*`(cos(x)))), `*`(sin(x))), `-`(`/`(4401, 4000))) = 0 (4.2)
 

>
 

add Typesetting:-mrow(Typesetting:-mfrac(Typesetting:-mn( to both sides to get 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`*`(`+`(`/`(61, 50), `*`(`/`(17, 10), `*`(cos(x)))), `*`(sin(x))) = `/`(4401, 4000) (4.3)
 

>
 

Square both sides to get 

 

> Typesetting:-mrow(Typesetting:-mi(
 

`*`(`^`(`+`(`/`(61, 50), `*`(`/`(17, 10), `*`(cos(x)))), 2), `*`(`^`(sin(x), 2))) = `/`(19368801, 16000000) (4.4)
 

>
 

then impose Typesetting:-mrow(Typesetting:-msup(Typesetting:-mi( to get 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`*`(`^`(`+`(`/`(61, 50), `*`(`/`(17, 10), `*`(cos(x)))), 2), `*`(`+`(1, `-`(`*`(`^`(cos(x), 2)))))) = `/`(19368801, 16000000) (4.5)
 

>
 

Bring everything to the left (most easily done with the Context Menu) to obtain 

 

> Typesetting:-mrow(Typesetting:-mi(
 

`+`(`*`(`^`(`+`(`/`(61, 50), `*`(`/`(17, 10), `*`(cos(x)))), 2), `*`(`+`(1, `-`(`*`(`^`(cos(x), 2)))))), `-`(`/`(19368801, 16000000))) (4.6)
 

>
 

then expand the parentheses.  Again, this is most easily done with the Context Menu, but the expand command will suffice. 

 

> Typesetting:-mrow(Typesetting:-mi(
 

`+`(`/`(4445599, 16000000), `*`(`/`(876, 625), `*`(`^`(cos(x), 2))), `*`(`/`(1037, 250), `*`(cos(x))), `-`(`*`(`/`(1037, 250), `*`(`^`(cos(x), 3)))), `-`(`*`(`/`(289, 100), `*`(`^`(cos(x), 4))))) (4.7)
 

>
 

The route taken toTypesetting:-mrow(Typesetting:-mo( shouldn't distract us from the next step where we attempt to factor this expression.  Again, we could have used the Context Menu, but the factor command will suffice. 

 

> Typesetting:-mrow(Typesetting:-mi(
 

`+`(`/`(4445599, 16000000), `*`(`/`(876, 625), `*`(`^`(cos(x), 2))), `*`(`/`(1037, 250), `*`(cos(x))), `-`(`*`(`/`(1037, 250), `*`(`^`(cos(x), 3)))), `-`(`*`(`/`(289, 100), `*`(`^`(cos(x), 4)))))
 

>
 

The expression does not factor over the rationals.  The expression can be made more compact if we write it as 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`+`(`/`(4445599, 16000000), `*`(`/`(876, 625), `*`(`^`(z, 2))), `*`(`/`(1037, 250), `*`(z)), `-`(`*`(`/`(1037, 250), `*`(`^`(z, 3)))), `-`(`*`(`/`(289, 100), `*`(`^`(z, 4))))) (4.8)
 

>
 

Although the expression does not factor over the rationals, it does factor over the reals, as we see from 

 

> Typesetting:-mrow(Typesetting:-mi(
 

`+`(`-`(`*`(2.890000000, `*`(`+`(z, 0.6889949669e-1), `*`(`+`(z, `-`(.9184297849)), `*`(`+`(`*`(`^`(z, 2)), `*`(2.284824406, `*`(z)), 1.519324188)))))))
 

>
 

The coefficients in the factored form are approximations of exact representations of irrational numbers.  Maple can obtain exact expressions for the zeros of the quartic polynomial Typesetting:-mrow(Typesetting:-mo(but these expressions are exceptionally unwieldy. Indeed, the solve command provides the solutions in the compact RootOf form shown below 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`+`(`*`(`/`(1, 20), `*`(RootOf(`+`(`-`(4445599), `-`(`*`(56064, `*`(`^`(_Z, 2)))), `-`(`*`(3318400, `*`(_Z))), `*`(8296, `*`(`^`(_Z, 3))), `*`(289, `*`(`^`(_Z, 4)))), index = 1)))), `+`(`*`(`/`(1, 20)...
`+`(`*`(`/`(1, 20), `*`(RootOf(`+`(`-`(4445599), `-`(`*`(56064, `*`(`^`(_Z, 2)))), `-`(`*`(3318400, `*`(_Z))), `*`(8296, `*`(`^`(_Z, 3))), `*`(289, `*`(`^`(_Z, 4)))), index = 1)))), `+`(`*`(`/`(1, 20)...
`+`(`*`(`/`(1, 20), `*`(RootOf(`+`(`-`(4445599), `-`(`*`(56064, `*`(`^`(_Z, 2)))), `-`(`*`(3318400, `*`(_Z))), `*`(8296, `*`(`^`(_Z, 3))), `*`(289, `*`(`^`(_Z, 4)))), index = 1)))), `+`(`*`(`/`(1, 20)...
`+`(`*`(`/`(1, 20), `*`(RootOf(`+`(`-`(4445599), `-`(`*`(56064, `*`(`^`(_Z, 2)))), `-`(`*`(3318400, `*`(_Z))), `*`(8296, `*`(`^`(_Z, 3))), `*`(289, `*`(`^`(_Z, 4)))), index = 1)))), `+`(`*`(`/`(1, 20)...
 

>
 

but an application of the allvalues command to just the first such solution yields the cumbersome expression 

 

> Typesetting:-mrow(Typesetting:-mo(
 

`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
`+`(`-`(`/`(61, 170)), `*`(`/`(1, 680), `*`(`^`(2, `/`(1, 2)), `*`(`^`(`/`(`*`(`+`(`*`(48456, `*`(`^`(`+`(134802424991908, `*`(7803, `*`(`^`(176073951178517210885, `/`(1, 2))))), `/`(1, 3)))), `*`(`^`...
 

>
 

The interested reader is welcome to applying allvalues to the other exact solutions as well. 

 

To obtain feedback on the calculations factor executes as it attempts to factor Typesetting:-mrow(Typesetting:-mo(, execute 

 

> Typesetting:-mrow(Typesetting:-mi(
 

>
 

then 

 

> Typesetting:-mrow(Typesetting:-mo(
 

 

factor/polynom: polynomial factorization: number of terms 5
factor/unifactor: entering
factor/unifactor: polynomial has degree 4 with 8 digit coefficients
factor/linfacts: computing the linear factors
factor/linfacts: there are 0 roots mod 29
factor/fac1mod: entering
factor/fac1mod: found prime 7
factor/fac1mod: distinct degree factorization
factor/fac1mod: degree set {0}
factor/fac1mod: polynomial proven irreducible by degree analysis
factor/unifactor: exiting
`+`(`/`(4445599, 16000000), `*`(`/`(876, 625), `*`(`^`(z, 2))), `*`(`/`(1037, 250), `*`(z)), `-`(`*`(`/`(1037, 250), `*`(`^`(z, 3)))), `-`(`*`(`/`(289, 100), `*`(`^`(z, 4)))))
 

>
 

In essence, Maple has proven that Typesetting:-mrow(Typesetting:-mo( is irreducible over the rationals.  It would be a significant challenge for a student to solve the original trig equation completely "by hand" without some form of advanced technology.  Maple's Context Menu system, along with access to palettes and the "Equation Manipulator" make exploring and solving the given equation feasible. 

 

Because Maple stores the generated information in a "remember table," executing factor a second time will suppress the data, as we see from 

 

> Typesetting:-mrow(Typesetting:-mi(
 

>
 

It makes it seem as though "it doesn't work anymore."  However, the cure is 

 

> Typesetting:-mrow(Typesetting:-mo(
Typesetting:-mrow(Typesetting:-mi(
 

 

factor/polynom: polynomial factorization: number of terms 5
factor/unifactor: entering
factor/unifactor: polynomial has degree 4 with 8 digit coefficients
factor/linfacts: computing the linear factors
factor/linfacts: there are 0 roots mod 29
factor/fac1mod: entering
factor/fac1mod: found prime 7
factor/fac1mod: distinct degree factorization
factor/fac1mod: degree set {0}
factor/fac1mod: polynomial proven irreducible by degree analysis
factor/unifactor: exiting
`+`(`/`(4445599, 16000000), `*`(`/`(876, 625), `*`(`^`(z, 2))), `*`(`/`(1037, 250), `*`(z)), `-`(`*`(`/`(1037, 250), `*`(`^`(z, 3)))), `-`(`*`(`/`(289, 100), `*`(`^`(z, 4)))))
 

>
 

 

 

Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.  

 

Image