Application Center - Maplesoft

App Preview:

Second order theory of deflections for the linear elastic isotropic beams (Polish version)

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


 

Image 

Second Order Theory of Deflections for the
Linear Elastic Isotropic Beams (Polish Version)
 

 

Prof. Marcin Kami?ski, Ph.D., D.Sc.  
Chair of Mechanics of Materials,
Technical University of ??d?,
Al. Politechniki 6, 93-590 ??d?, POLAND
email:
Marcin.Kaminski@p.lodz.pl,
webpage:
kmm.p.lodz.pl/pracownicy/Marcin_Kaminski/index.html   

 

 

 

Abstract: This script has been written to demonstrate a comparison between the first and the second order theories for the elastic isotropic beams deflection. As it is known, the second order theory enables to include directly the influence of the normal forces along the beam on its deflection function. From the mathematical point of view, the differential equation adequate to the deflection function is written on the deformed configuration of this beam, so that the normal forces can play significant role in the beam strength. This script consists of the three parts - the first one describes the classsical deflection determination procedure for the single bay structure clamped at both edges and loaded with the triangular force decreasing from the right to the left end. The extra loading is applied in the form of a concentrated bending moment at the right edge of the beam. The main aim of the second section is to present the procedure related to the second order theory with a compressive force, whereas the third section is devoted to the second order model with tension.  
 

 

Keywords: elastic beams, deflection analysis, internal forces diagrams  

Classical solution with no normal force effect -
Klasyczne rozwi?zanie bez uwzglednienia wplywu sily normalnej
 

> restart: with(PDEtools):
 

Zapisujemy w pierwszej kolejno?ci funkcj? obci??enia ci?glego na belce  

> z:=q-q*x/l;
 

`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))) (1.1)
 

i korzystaj?c z niej, wielko?? momentu w podporze oraz momentu zginaj?cego w belce  

> Ma:=Mo+Mb+Va*l-1/3*q*l^2;
 

`+`(Mo, Mb, `*`(Va, `*`(l)), `-`(`*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2)))))) (1.2)
 

> M(x):=Va*x-Ma-z*x^2/2-1/2*(q-z)*x*2/3*x;
 

`+`(`*`(Va, `*`(x)), `-`(Mo), `-`(Mb), `-`(`*`(Va, `*`(l))), `*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2)))), `-`(`*`(`/`(1, 2), `*`(`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))), `*`(`^`(x, 2))))), `-`(`/`(`*`(`/`... (1.3)
 

Do rozwi?zania r?wnania r?niczkowego ugi?cia belki potrzebne b?d? nast?puj?ce warunki brzegowe 

> bc1:=y(0)=0;
 

y(0) = 0 (1.4)
 

> bc2:=D(y)(0)=0;
 

(D(y))(0) = 0 (1.5)
 

a samo r?wnanie ma tutaj posta?  

> r1:=E*J*diff(y(x),x,x)=-M(x);
 

`*`(E, `*`(J, `*`(diff(diff(y(x), x), x)))) = `+`(`-`(`*`(Va, `*`(x))), Mo, Mb, `*`(Va, `*`(l)), `-`(`*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2))))), `*`(`/`(1, 2), `*`(`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))... (1.6)
 

a jego rozwi?zanie jest nast?puj?ce:  

> dsolve({r1,bc1,bc2},y(x)); assign(%);
 

y(x) = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(Va, `*`(`^`(x, 3), `*`(l))), `-`(`*`(3, `*`(Mo, `*`(l, `*`(`^`(x, 2)))))), `-`(`*`(3, `*`(Mb, `*`(l, `*`(`^`(x, 2)))))), `-`(`*`(3, `*`(Va, `*`(`^`(l, 2),... (1.7)
 

Dodatkowe warunki brzegowe slu?? tutaj do znalezienia nadliczbowych reakcji 

> bc3:=subs(x=l,y(x))=0;
 

`+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`-`(`*`(2, `*`(Va, `*`(`^`(l, 4))))), `-`(`*`(3, `*`(Mo, `*`(`^`(l, 3))))), `-`(`*`(3, `*`(Mb, `*`(`^`(l, 3))))), `*`(`/`(4, 5), `*`(q, `*`(`^`(l, 5))))))), `*`(E, `... (1.8)
 

> bc4:=subs(x=l,diff(y(x),x))=0;
 

`+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`-`(`*`(3, `*`(Va, `*`(`^`(l, 3))))), `-`(`*`(6, `*`(Mo, `*`(`^`(l, 2))))), `-`(`*`(6, `*`(Mb, `*`(`^`(l, 2))))), `*`(`/`(5, 4), `*`(q, `*`(`^`(l, 4))))))), `*`(E, `... (1.9)
 

mamy wi?c  

> solve({bc3,bc4},{Va,Mb}); assign(%);
 

{Va = `+`(`*`(`/`(7, 20), `*`(q, `*`(l)))), Mb = `+`(`*`(`/`(1, 30), `*`(q, `*`(`^`(l, 2)))), `-`(Mo))} (1.10)
 

a funkcja opisuj?ca lini? ugi?cia ma posta?  

> y(x):=simplify(eval(y(x)));
 

`+`(`-`(`/`(`*`(`/`(1, 120), `*`(`^`(x, 2), `*`(q, `*`(`+`(`*`(7, `*`(`^`(l, 2), `*`(x))), `-`(`*`(3, `*`(`^`(l, 3)))), `-`(`*`(5, `*`(`^`(x, 2), `*`(l)))), `*`(`^`(x, 3))))))), `*`(E, `*`(J, `*`(l)))... (1.11)
 

Przyjmujemy konkretne warto?ci parametr?w projektowych w zadaniu  

> l:=10: q:=10: Mo:=20: E:=210*10^6: J:=2140/10^8:
 

> y(x):=simplify(eval(y(x))): evalf(y(x));
 

`+`(`-`(`*`(0.1854324284e-5, `*`(`^`(x, 2), `*`(`+`(`*`(700., `*`(x)), `-`(3000.), `-`(`*`(50., `*`(`^`(x, 2)))), `*`(`^`(x, 3)))))))) (1.12)
 

sporz?dzamy kolejno wykresy ugi?cia, k?ta ugi?cia, momentu gn?cego oraz siy tn?cej  

> deflection:=unapply(y(x)*E*J,x): moment:=unapply((diff(y(x),x,x),x)): shear:=unapply((diff(y(x),x,x,x),x)):
 

> plot(-y(x),x=0..l,color=black , thickness=2,title="Linia ugi?cia belki",  tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(diff(y(x),x),x=0..l,color=black,thickness=2,title="Wykres k?ta ugi?cia belki",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(E*J*diff(y(x),x,x),x=0..l,color=black,thickness=2,title="Wykres moment?w zginaj?cych",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(E*J*diff(y(x),x,x,x),x=0..l,color=black,thickness=2,title="Wykres sily tn?cej",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

Znajdujemy kolejno miejsce zerowania sie sily tn?cej  

> x1:=fsolve(diff(y(x),x,x,x)=0,x);
 

4.522774425, 15.47722558 (1.13)
 

w celu okreslenia miejsca wystepowania maksymalnego momentu gnacego  

> Mmax:=evalf(moment(x1)*E*J);
 

-21.43892241 (1.14)
 

a w dalszej kolejno?ci obliczamy wielko?ci momentow w utwierdzeniu i tulei 

> Ma:=evalf(moment(0.0)*E*J);
 

50.00000002 (1.15)
 

> Mb:=evalf(moment(l)*E*J);
 

33.33333333 (1.16)
 

oraz odpowiadaj?ce im reakcje pionowe 

> Va:=evalf(shear(0.0)*E*J);
 

-35.00000001 (1.17)
 

> Vb:=evalf(shear(l)*E*J);
 

15. (1.18)
 

Ostatecznie obliczamy miejsce zerowania si? k?ta ugi?cia 

> x2:=fsolve(diff(y(x),x)=0,x=1..(l-1));
 

4.753049234 (1.19)
 

dla okreslenia maksymalnego ugi?cia rozpatrywanej belki  

> ymax:=evalf(deflection(x2)/E/J);
 

0.2911744226e-1 (1.20)
 

 

Second order solution with the compressive force -
Rozwi?zanie drugiego rz?du z uwzgl?dnieniem sily ?ciskaj?cej
 

> restart: with(PDEtools):
 

Zapisujemy w pierwszej kolejno?ci funkcj? obci??enia ci?glego na belce  

> z:=q-q*x/l;
 

`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))) (2.1)
 

i korzystaj?c z niej, wielko?? momentu w podporze oraz momentu zginaj?cego w belce  

> Ma:=Mo+Mb+Va*l-1/3*q*l^2;
 

`+`(Mo, Mb, `*`(Va, `*`(l)), `-`(`*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2)))))) (2.2)
 

> M(x):=Va*x-Ma-z*x^2/2-1/2*(q-z)*x*2/3*x+N*y(x);
 

`+`(`*`(Va, `*`(x)), `-`(Mo), `-`(Mb), `-`(`*`(Va, `*`(l))), `*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2)))), `-`(`*`(`/`(1, 2), `*`(`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))), `*`(`^`(x, 2))))), `-`(`/`(`*`(`/`... (2.3)
 

Do rozwi?zania r?wnania r?niczkowego ugi?cia belki potrzebne b?d? nast?puj?ce warunki brzegowe 

> bc1:=y(0)=0;
 

y(0) = 0 (2.4)
 

> bc2:=D(y)(0)=0;
 

(D(y))(0) = 0 (2.5)
 

a samo r?wnanie ma tutaj posta?  

> r1:=E*J*diff(y(x),x,x)=-M(x);
 

`*`(E, `*`(J, `*`(diff(diff(y(x), x), x)))) = `+`(`-`(`*`(Va, `*`(x))), Mo, Mb, `*`(Va, `*`(l)), `-`(`*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2))))), `*`(`/`(1, 2), `*`(`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))... (2.6)
 

a jego rozwi?zanie jest nast?puj?ce:  

> dsolve({r1,bc1,bc2},y(x)); assign(%);
 

y(x) = `+`(`-`(`/`(`*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)), `*`(`+`(`-`(`*`(N, `*`(Va, `*`(l)))), `*`...
y(x) = `+`(`-`(`/`(`*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)), `*`(`+`(`-`(`*`(N, `*`(Va, `*`(l)))), `*`...
(2.7)
 

Dodatkowe warunki brzegowe slu?? tutaj do znalezienia nadliczbowych reakcji 

> bc3:=subs(x=l,y(x))=0;
 

`+`(`-`(`/`(`*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)), `*`(`+`(`-`(`*`(N, `*`(Va, `*`(l)))), `*`(E, `*`...
`+`(`-`(`/`(`*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)), `*`(`+`(`-`(`*`(N, `*`(Va, `*`(l)))), `*`(E, `*`...
(2.8)
 

> bc4:=subs(x=l,diff(y(x),x))=0;
 

`+`(`-`(`/`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(N, `*`(Va, `*`(l)))), `*`(E, `*`(J, `*`(q)))))), `*`(`^`(N, 2), `*`(l)))), `-`...
`+`(`-`(`/`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(N, `*`(Va, `*`(l)))), `*`(E, `*`(J, `*`(q)))))), `*`(`^`(N, 2), `*`(l)))), `-`...
(2.9)
 

mamy wi?c  

> solve({bc3,bc4},{Va,Mb}); assign(%);
 

{Mb = `+`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(3, `*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(17, 2)), `*`(l, `*`(E, `*`(J, `*`(q))))))), `-`...
{Mb = `+`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(3, `*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(17, 2)), `*`(l, `*`(E, `*`(J, `*`(q))))))), `-`...
{Mb = `+`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(3, `*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(17, 2)), `*`(l, `*`(E, `*`(J, `*`(q))))))), `-`...
{Mb = `+`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(3, `*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(17, 2)), `*`(l, `*`(E, `*`(J, `*`(q))))))), `-`...
{Mb = `+`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(3, `*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(17, 2)), `*`(l, `*`(E, `*`(J, `*`(q))))))), `-`...
{Mb = `+`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(3, `*`(sin(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(17, 2)), `*`(l, `*`(E, `*`(J, `*`(q))))))), `-`...
(2.10)
 

a funkcja opisuj?ca lini? ugi?cia ma posta?  

> y(x):=simplify(eval(y(x)));
 

`+`(`-`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`-`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(1, 2)), `*`(`^`(l, 3), `*`(`^`(E, `/`(1, 2)),...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`-`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(1, 2)), `*`(`^`(l, 3), `*`(`^`(E, `/`(1, 2)),...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`-`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(1, 2)), `*`(`^`(l, 3), `*`(`^`(E, `/`(1, 2)),...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`-`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(1, 2)), `*`(`^`(l, 3), `*`(`^`(E, `/`(1, 2)),...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`-`(`*`(cos(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`^`(N, `/`(1, 2)), `*`(`^`(l, 3), `*`(`^`(E, `/`(1, 2)),...
(2.11)
 

Przyjmujemy konkretne warto?ci parametr?w projektowych w zadaniu  

> l:=10: q:=10: Mo:=20: E:=210*10^6: J:=2140/10^8: N:=100:
 

> y(x):=simplify(eval(y(x))): evalf(y(x));
 

`+`(`*`(3.976322201, `*`(cos(`+`(`*`(.1491706787, `*`(x)))))), `-`(3.976322201), `*`(0.5000000004e-1, `*`(`^`(x, 2))), `-`(`*`(.6645298483, `*`(sin(`+`(`*`(.1491706787, `*`(x))))))), `-`(`*`(0.1666666... (2.12)
 

sporz?dzamy kolejno wykresy ugi?cia, k?ta ugi?cia, momentu gn?cego oraz siy tn?cej  

> deflection:=unapply(y(x)*E*J,x): moment:=unapply((diff(y(x),x,x),x)): shear:=unapply((diff(y(x),x,x,x),x)):
 

> plot(-y(x),x=0..l,color=green , thickness=2,title="Linia ugi?cia belki",  tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(diff(y(x),x),x=0..l,color=green,thickness=2,title="Wykres k?ta ugi?cia belki",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(E*J*diff(y(x),x,x),x=0..l,color=green,thickness=2,title="Wykres moment?w zginaj?cych",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(E*J*diff(y(x),x,x,x),x=0..l,color=green,thickness=2,title="Wykres sily tn?cej",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

Znajdujemy kolejno miejsce zerowania sie sily tn?cej  

> x1:=fsolve(diff(y(x),x,x,x)=0,x);
 

4.547647435 (2.13)
 

w celu okreslenia miejsca wystepowania maksymalnego momentu gnacego  

> Mmax:=evalf(moment(x1)*E*J);
 

-22.86378153 (2.14)
 

a w dalszej kolejno?ci obliczamy wielko?ci momentow w utwierdzeniu i tulei 

> Ma:=evalf(moment(0.0)*E*J);
 

51.76778055 (2.15)
 

> Mb:=evalf(moment(l)*E*J);
 

34.82948121 (2.16)
 

oraz odpowiadaj?ce im reakcje pionowe 

> Va:=evalf(shear(0.0)*E*J);
 

-35.02716321 (2.17)
 

> Vb:=evalf(shear(l)*E*J);
 

14.97283674 (2.18)
 

Ostatecznie obliczamy miejsce zerowania si? k?ta ugi?cia 

> x2:=fsolve(diff(y(x),x)=0,x=1..(l-1));
 

4.761849132 (2.19)
 

dla okreslenia maksymalnego ugi?cia rozpatrywanej belki  

> ymax:=evalf(deflection(x2)/E/J);
 

0.3082440149e-1 (2.20)
 

 

Second order solution with tension -
Rozwi?zanie drugiego rz?du z sil? rozci?gaj?c?
 

> restart: with(PDEtools):
 

Zapisujemy w pierwszej kolejno?ci funkcj? obci??enia ci?glego na belce  

> z:=q-q*x/l;
 

`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))) (3.1)
 

i korzystaj?c z niej, wielko?? momentu w podporze oraz momentu zginaj?cego w belce  

> Ma:=Mo+Mb+Va*l-1/3*q*l^2;
 

`+`(Mo, Mb, `*`(Va, `*`(l)), `-`(`*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2)))))) (3.2)
 

> M(x):=Va*x-Ma-z*x^2/2-1/2*(q-z)*x*2/3*x-N*y(x);
 

`+`(`*`(Va, `*`(x)), `-`(Mo), `-`(Mb), `-`(`*`(Va, `*`(l))), `*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2)))), `-`(`*`(`/`(1, 2), `*`(`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))), `*`(`^`(x, 2))))), `-`(`/`(`*`(`/`... (3.3)
 

Do rozwi?zania r?wnania r?niczkowego ugi?cia belki potrzebne b?d? nast?puj?ce warunki brzegowe 

> bc1:=y(0)=0;
 

y(0) = 0 (3.4)
 

> bc2:=D(y)(0)=0;
 

(D(y))(0) = 0 (3.5)
 

a samo r?wnanie ma tutaj posta?  

> r1:=E*J*diff(y(x),x,x)=-M(x);
 

`*`(E, `*`(J, `*`(diff(diff(y(x), x), x)))) = `+`(`-`(`*`(Va, `*`(x))), Mo, Mb, `*`(Va, `*`(l)), `-`(`*`(`/`(1, 3), `*`(q, `*`(`^`(l, 2))))), `*`(`/`(1, 2), `*`(`+`(q, `-`(`/`(`*`(q, `*`(x)), `*`(l)))... (3.6)
 

a jego rozwi?zanie jest nast?puj?ce:  

> dsolve({r1,bc1,bc2},y(x)); assign(%);
 

y(x) = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N,...
y(x) = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N,...
y(x) = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(x)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N,...
(3.7)
 

Dodatkowe warunki brzegowe slu?? tutaj do znalezienia nadliczbowych reakcji 

> bc3:=subs(x=l,y(x))=0;
 

`+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N, `/`(3,...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N, `/`(3,...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N, `/`(3,...
(3.8)
 

> bc4:=subs(x=l,diff(y(x),x))=0;
 

`+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N, `/`(3,...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N, `/`(3,...
`+`(`-`(`/`(`*`(`/`(1, 6), `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(`+`(`-`(`*`(3, `*`(`^`(N, `/`(3, 2)), `*`(l, `*`(Mb))))), `*`(`^`(N, `/`(3,...
(3.9)
 

mamy wi?c  

> solve({bc3,bc4},{Va,Mb}); assign(%);
 

{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
{Mb = `+`(`-`(`/`(`*`(`/`(1, 6), `*`(`+`(`*`(12, `*`(`^`(N, `/`(1, 2)), `*`(Mo, `*`(exp(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))), `*`(exp(`+`(`-`(`/`(`*`(`^...
(3.10)
 

a funkcja opisuj?ca lini? ugi?cia ma posta?  

> y(x):=simplify(eval(y(x)));
 

`+`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`*`(3, `*`(`^`(N, `/`(1, 2)), `*`(x, `*`(exp(`+`(`-`(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))))), `*`(`^`(E, `/`(1, 2))...
`+`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`*`(3, `*`(`^`(N, `/`(1, 2)), `*`(x, `*`(exp(`+`(`-`(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))))), `*`(`^`(E, `/`(1, 2))...
`+`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`*`(3, `*`(`^`(N, `/`(1, 2)), `*`(x, `*`(exp(`+`(`-`(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))))), `*`(`^`(E, `/`(1, 2))...
`+`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`*`(3, `*`(`^`(N, `/`(1, 2)), `*`(x, `*`(exp(`+`(`-`(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))))), `*`(`^`(E, `/`(1, 2))...
`+`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`*`(3, `*`(`^`(N, `/`(1, 2)), `*`(x, `*`(exp(`+`(`-`(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))))), `*`(`^`(E, `/`(1, 2))...
`+`(`/`(`*`(`/`(1, 6), `*`(q, `*`(`+`(`*`(3, `*`(`^`(N, `/`(1, 2)), `*`(x, `*`(exp(`+`(`-`(`/`(`*`(`^`(N, `/`(1, 2)), `*`(l)), `*`(`^`(E, `/`(1, 2)), `*`(`^`(J, `/`(1, 2)))))))), `*`(`^`(E, `/`(1, 2))...
(3.11)
 

Przyjmujemy konkretne warto?ci parametr?w projektowych w zadaniu  

> l:=10: q:=10: Mo:=20: E:=210*10^6: J:=2140/10^8: N:=100:
 

> y(x):=simplify(eval(y(x))): evalf(y(x));
 

`+`(`*`(.7991414738, `*`(x)), `-`(`*`(0.4999999989e-1, `*`(`^`(x, 2)))), `*`(0.1666666662e-2, `*`(`^`(x, 3))), `-`(`*`(.3969290064, `*`(exp(`+`(`*`(.1491706787, `*`(x)), 1.491706787))))), `*`(1.182057...
`+`(`*`(.7991414738, `*`(x)), `-`(`*`(0.4999999989e-1, `*`(`^`(x, 2)))), `*`(0.1666666662e-2, `*`(`^`(x, 3))), `-`(`*`(.3969290064, `*`(exp(`+`(`*`(.1491706787, `*`(x)), 1.491706787))))), `*`(1.182057...
(3.12)
 

sporz?dzamy kolejno wykresy ugi?cia, k?ta ugi?cia, momentu gn?cego oraz siy tn?cej  

> deflection:=unapply(y(x)*E*J,x): moment:=unapply((diff(y(x),x,x),x)): shear:=unapply((diff(y(x),x,x,x),x)):
 

> plot(-y(x),x=0..l,color=blue , thickness=2,title="Linia ugi?cia belki",  tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(diff(y(x),x),x=0..l,color=blue,thickness=2,title="Wykres k?ta ugi?cia belki",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(E*J*diff(y(x),x,x),x=0..l,color=blue,thickness=2,title="Wykres moment?w zginaj?cych",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

> plot(E*J*diff(y(x),x,x,x),x=0..l,color=blue,thickness=2,title="Wykres sily tn?cej",tickmarks=[10,10],axes=boxed,font=[TIMES, BOLD, 16]);
 

Plot_2d
 

Znajdujemy kolejno miejsce zerowania sie sily tn?cej  

> x1:=fsolve(diff(y(x),x,x,x)=0,x);
 

4.497948570 (3.13)
 

w celu okreslenia miejsca wystepowania maksymalnego momentu gnacego  

> Mmax:=evalf(moment(x1)*E*J);
 

-20.17229723 (3.14)
 

a w dalszej kolejno?ci obliczamy wielko?ci momentow w utwierdzeniu i tulei 

> Ma:=evalf(moment(0.0)*E*J);
 

48.40303016 (3.15)
 

> Mb:=evalf(moment(l)*E*J);
 

31.99488268 (3.16)
 

oraz odpowiadaj?ce im reakcje pionowe 

> Va:=evalf(shear(0.0)*E*J);
 

-34.97414775 (3.17)
 

> Vb:=evalf(shear(l)*E*J);
 

15.02585191 (3.18)
 

Ostatecznie obliczamy miejsce zerowania si? k?ta ugi?cia 

> x2:=fsolve(diff(y(x),x)=0,x=1..(l-1));
 

4.744589818 (3.19)
 

dla okreslenia maksymalnego ugi?cia rozpatrywanej belki  

> ymax:=evalf(deflection(x2)/E/J);
 

0.2759226722e-1 (3.20)
 


Legal Notice: The copyright for this application is owned by the author(s). Neither Maplesoft nor the author are responsible for any errors contained within and are not liable for any damages resulting from the use of this material. This application is intended for non-commercial, non-profit use only. Contact the author for permission if you wish to use this application in for-profit activities.
 

Image