Calculus I
Lesson 14: Solving Trigonometric Equations
In this lesson, we show how to solve equations for x that contain trig functions. Our general method will be to move all terms over to the left-hand side of the equation and find the roots of the resulting equation. We'll find these roots both analytically (by solving) and graphically by inspecting the plot and seeing where the curve crosses the x-axis.
Example 1
> restart:
> f1:= x -> sin(x) - sqrt(3)/2;
> plot(f1(x), x = 0..2*Pi, color = red, thickness=2);
> solve(f1(x) = 0, x);
Solutions are: and
Example 2
> f2:= x -> cos(x)* cos(x) - 1/2;
> plot(f2(x), x = 0..2*Pi, color = red, thickness=2);
> solve(f2(x) = 0, x);
Solutions are:
Example 3 sin(x) cos(x) = 0
> f3:= x -> sin(x) * cos(x) ;
> plot(f3(x), x = 0..2*Pi, color = red, thickness=2);
> solve(f3(x) = 0, x);
Example 4
> f4:= x -> (tan(x) - 1) * ( 2 * sin(x) + 1);
> plot(f4(x), x = 0.. 2 * Pi, color = red, thickness=2);
> solve(f4(x) = 0, x );
> solve(tan(x) - 1 = 0, x);
> with(plots):
Warning, the name changecoords has been redefined
> a:= plot(2 * sin(x) + 1 , x = -Pi..2*Pi, color = red, thickness=2):
> b:= plot([-Pi/6,t,t=-1..1], color = blue):
> c:= plot([(11/6)*Pi,t, t = -1..1], color = blue):
> d:= plot([(7/6)*Pi,t ,t = -1..1], color = blue):
> display({a,b,c,d});
Example 5
> f5:= x-> 2 * sin(x) * sin(x) - sin(x) - 1;
> plot(f5(x), x = 0..2*Pi, color = red, thickness=2);
> factor(2 * sin(x) * sin(x) - sin(x) - 1);
> solve(sin(x) -1 = 0,x);
Using problem 4 for 2 sin(x) + 1 = 0 we have solutions are: .
Example 6 sin(2x) + sin(x) = 0
> f6:= x -> sin (2*x) + sin(x);
> plot(f6(x), x = 0..2*Pi, color = red, thickness=2);
> simplify(sin (2*x) + sin(x));
We have: sin(x) ( 2 cos(x) + 1 ) = 0, i.e.,
sin(x) = 0 OR 2 cos(x) + 1 = 0.
> plot(2*cos(x) + 1, x = 0..2*Pi, color = red, thickness=2);
> solve(2*cos(x) + 1 = 0, x);
Example 7 cos(x) + cos(2x) = 0
> f7:= x ->cos(x) + cos(2*x);
> plot(f7(x), x = 0..2*Pi, color = red, thickness=2);
> simplify( cos(x) + cos(2*x));
> factor(%);
We obtain solutions from:
cos(x) = -1 OR 2 cos(x) = 1.
> plot(cos(x) + 1, x = 0..2*Pi, color = red, thickness=2);
> solve(cos(x) + 1 = 0,x);
> plot(2 * cos(x) - 1, x = 0..2 * Pi, color = red, thickness=2);
> solve(2 * cos(x) - 1,x);
Example 8
2 tan(x) sin(x) - tan(x) = 0
> f8:= x -> 2 * tan(x) * sin(x) - tan(x);
> plot(f8(x), x = 0..2*Pi, color = red, thickness=2);
> factor(2 * tan(x) * sin(x) - tan(x));
Solutions are obtained from
tan(x) = 0 OR sin(x) =
> plot(sin(x) - 1/2, x = 0..Pi, color = red, thickness=2);
> solve(sin(x) - 1/2 = 0, x);
Example 9 2 cos(x) + sec(x) = 3
> f9:= x-> 2 * cos(x) + sec(x) - 3;
> plot(f9(x), x = 0..2*Pi, color = red, thickness=2);
> simplify(2 * cos(x) + sec(x) - 3);
> factor(2 * cos(x) * cos(x) - 3* cos(x) + 1);
Solutions are obtained from:
cos(x) = (1/2 OR cos(x) = 1.
> solve(cos(x) - 1/2 = 0,x);
we have:
> f9((1/3)*Pi);
> f9((5/1)*Pi);
> f9(0);
> f9(2 *Pi);
Solutions are: .
Example 10 2 sin(x) + csc(x) = 3
> f10:= x -> 2 * sin(x) + csc(x) - 3;
> plot(f10(x), x = 0..Pi/2, color = red, thickness=2);
> factor(2 * sin(x) * sin(x) + 1 - 3* sin(x));
sin(x) = 1/2 OR sin(x) = 1.
we obtain:
> f10((1/6)*Pi);
> f10((11/6)*Pi);
> f10((1/2)*Pi);
Example 11 sin(x) + 1 = cos(x)
> f11:= x -> sin(x) + 1 - cos(x);
> plot(f11(x), x = 0..2*Pi, color = red, thickness=2);
take the equation sin(x) + 1 = cos(x) and square both sides to get:
sin(x)^2 + 2 sin(x) + 1 = cos(x)^2 = 1 - sin(x)^2
OR
2 sin(x)^2 + 2 sin(x) = 0
2 sin(x) ( sin(x) + 1) = 0.
> f11(0);
> f11(Pi);
> f11(2 * Pi);
> f11((3/2) * Pi);