Application Center - Maplesoft

App Preview:

Construction and movement of the centrodes of a slider crank mechanism

You can switch back to the summary page by clicking here.

Learn about Maple
Download Application


Construction and movement of the centrodes of a slider crank mechanism 

dr.B.Laczik Budapest University of Technology and Economics, HUNGARY 

laczik@goliat.eik.bme.hu 

The movement of the general planar linkage mechanism with one degree of freedom matches exactly the rolling of two centrode curves on each other without slipping.The first centrode is fixed to the frame of the linkage and the second centrode is fixed to the moving element of the mechanism.The example illustrates the analytic calculation and geometric construction of the centrodes for a slider crank mechanism, see. Fig.1. 

Image  

Fig. 1 

Calculation of the Centrode 1: 

The basic dimensions of the mechanism are r = CA and l = AB. 

Let the position angle BCA = . The instantaneous velocity centrum of the rod AB is the point P, which is the intersection of line CA and the line BP which is perpendicular to line BC, see Fig. 2.  

The cosine theorem applied to triangle CBA is: 

 

Image 

and the right-angled triangle CBP yields 

 

Image 

 

So the co-ordinates of the point P of Centrode1 are 

 

Image 

Image 

Fig.2 Fig. 3 

 

Calculation of the Centrode 2: 

If the rod AB is fixed, the velocity centrum of the rod CB is the point Q at the intersection of  line CA and the line BQ which is perpendicular line to BC, see Fig. 3.  

Now let the position angle BAC =  . Using the cosine theorem, from tirangle CBA: 

 

Image 

 

In the right-angled triangle CAQ the angle    and the corresponding sinus theorem is 

 

Image 

 

and additionally 

 

Image 

 

Image 

 

While 

 

Image 

 

so the co-ordinates of the point Q of Centrode 2 are 

 

Image 

Image 

 

The animations are designed using classic geometric constructions of centrodes. 

Fig. 4 illustrates the front and back sides of the actual construction of the centrodes and slider crank mechanism. 

 

Image                       Image 

 

Fig. 4 

 

                                                               

>
 

>  
 

> `assign`(r, 3); -1; `assign`(l, 3.1); -1; `assign`(N, 50); -1
 

> `assign`(d, sqrt(`+`(`*`(`^`(r, 2)), `*`(`^`(l, 2)), `-`(`*`(2, `*`(r, `*`(l, `*`(cos(phi))))))))); -1; `assign`(xi, `+`(`/`(`*`(d), `*`(sqrt(`+`(1, `-`(`^`(`/`(`*`(l, `*`(sin(phi))), `*`(d)), 2))))))...
`assign`(d, sqrt(`+`(`*`(`^`(r, 2)), `*`(`^`(l, 2)), `-`(`*`(2, `*`(r, `*`(l, `*`(cos(phi))))))))); -1; `assign`(xi, `+`(`/`(`*`(d), `*`(sqrt(`+`(1, `-`(`^`(`/`(`*`(l, `*`(sin(phi))), `*`(d)), 2))))))...
`assign`(d, sqrt(`+`(`*`(`^`(r, 2)), `*`(`^`(l, 2)), `-`(`*`(2, `*`(r, `*`(l, `*`(cos(phi))))))))); -1; `assign`(xi, `+`(`/`(`*`(d), `*`(sqrt(`+`(1, `-`(`^`(`/`(`*`(l, `*`(sin(phi))), `*`(d)), 2))))))...
`assign`(d, sqrt(`+`(`*`(`^`(r, 2)), `*`(`^`(l, 2)), `-`(`*`(2, `*`(r, `*`(l, `*`(cos(phi))))))))); -1; `assign`(xi, `+`(`/`(`*`(d), `*`(sqrt(`+`(1, `-`(`^`(`/`(`*`(l, `*`(sin(phi))), `*`(d)), 2))))))...
 

> for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
for i from 0 to N do `assign`(phi, evalf(`+`(`*`(`/`(1, 6), `*`(Pi)), `*`(5, `*`(Pi, `*`(i, `*`(`/`(`+`(`*`(3, `*`(N))))))))))); `assign`(x[i], evalf(X)); `assign`(y[i], evalf(Y)); `assign`(phi, evalf...
 

> `assign`(kep1, pointplot([seq([x[i], y[i]], i = 0 .. N)], connect = true, color = blue, thickness = 3)); -1; `assign`(kep2, pointplot([seq([AA[i], BB[i]], i = 0 .. N)], connect = true, color = red, th...
`assign`(kep1, pointplot([seq([x[i], y[i]], i = 0 .. N)], connect = true, color = blue, thickness = 3)); -1; `assign`(kep2, pointplot([seq([AA[i], BB[i]], i = 0 .. N)], connect = true, color = red, th...
`assign`(kep1, pointplot([seq([x[i], y[i]], i = 0 .. N)], connect = true, color = blue, thickness = 3)); -1; `assign`(kep2, pointplot([seq([AA[i], BB[i]], i = 0 .. N)], connect = true, color = red, th...
`assign`(kep1, pointplot([seq([x[i], y[i]], i = 0 .. N)], connect = true, color = blue, thickness = 3)); -1; `assign`(kep2, pointplot([seq([AA[i], BB[i]], i = 0 .. N)], connect = true, color = red, th...
 

Plot_2d  
 

> point(o, [0, 0]); -1; point(b, [1, 0]); -1; line(w, [o, b]); -1; point(oo, [r, 0]); -1
 

> for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(x[i], `*`(r, `*`(cos(alpha)))); `assign`(y[i], `*`(r, `*`(sin(alpha)))); `assign`(z[i], `+`(x[i], `*`(l...
 

> for i to `+`(N, `-`(1)) do segment(u || i, [S || (`+`(i, 1)), S || i]) end do; -1; segment(u || N, [S || 1, S || N]); -1; `assign`(cen1, draw([seq(u || j, j = 1 .. `+`(`*`(`/`(1, 2), `*`(N)), `-`(14))...
for i to `+`(N, `-`(1)) do segment(u || i, [S || (`+`(i, 1)), S || i]) end do; -1; segment(u || N, [S || 1, S || N]); -1; `assign`(cen1, draw([seq(u || j, j = 1 .. `+`(`*`(`/`(1, 2), `*`(N)), `-`(14))...
for i to `+`(N, `-`(1)) do segment(u || i, [S || (`+`(i, 1)), S || i]) end do; -1; segment(u || N, [S || 1, S || N]); -1; `assign`(cen1, draw([seq(u || j, j = 1 .. `+`(`*`(`/`(1, 2), `*`(N)), `-`(14))...
for i to `+`(N, `-`(1)) do segment(u || i, [S || (`+`(i, 1)), S || i]) end do; -1; segment(u || N, [S || 1, S || N]); -1; `assign`(cen1, draw([seq(u || j, j = 1 .. `+`(`*`(`/`(1, 2), `*`(N)), `-`(14))...
for i to `+`(N, `-`(1)) do segment(u || i, [S || (`+`(i, 1)), S || i]) end do; -1; segment(u || N, [S || 1, S || N]); -1; `assign`(cen1, draw([seq(u || j, j = 1 .. `+`(`*`(`/`(1, 2), `*`(N)), `-`(14))...
for i to `+`(N, `-`(1)) do segment(u || i, [S || (`+`(i, 1)), S || i]) end do; -1; segment(u || N, [S || 1, S || N]); -1; `assign`(cen1, draw([seq(u || j, j = 1 .. `+`(`*`(`/`(1, 2), `*`(N)), `-`(14))...
 

>  
 

> `assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
`assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
`assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
`assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
`assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
`assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
`assign`(T, NULL); -1; for i to N do `assign`(q, display(KEP[i], KEPP[i], cen1, scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-2...
 

Plot_2d  
 

> point(Q, [`+`(r, l), 0]); -1
 

> for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
for i from 0 to N do `assign`(alpha, evalf(`+`(`/`(`*`(2, `*`(Pi, `*`(i))), `*`(N))))); `assign`(xx[i], `*`(r, `*`(`+`(cos(alpha), 1)))); `assign`(yy[i], `*`(r, `*`(sin(alpha)))); point(P || i, [xx[i]...
 

> `assign`(cen2, draw([seq(M || j, j = 5 .. `+`(N, `-`(5)))], color = black)); -1; for i from 2 to N do segment(v || i, [M || (`+`(i, `-`(1))), M || i]) end do; -1
`assign`(cen2, draw([seq(M || j, j = 5 .. `+`(N, `-`(5)))], color = black)); -1; for i from 2 to N do segment(v || i, [M || (`+`(i, `-`(1))), M || i]) end do; -1
`assign`(cen2, draw([seq(M || j, j = 5 .. `+`(N, `-`(5)))], color = black)); -1; for i from 2 to N do segment(v || i, [M || (`+`(i, `-`(1))), M || i]) end do; -1
`assign`(cen2, draw([seq(M || j, j = 5 .. `+`(N, `-`(5)))], color = black)); -1; for i from 2 to N do segment(v || i, [M || (`+`(i, `-`(1))), M || i]) end do; -1
 

> `assign`(cen3, draw([seq(v || j, j = 6 .. `+`(N, `-`(5)))], color = magenta)); -1; `assign`(mozgo, display(cen2, cen3)); -1
 

> `assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
`assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
`assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
`assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
`assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
`assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
`assign`(T, NULL); -1; for s from 5 to N do `assign`(q, display(kepp[s], mozgo, keppp[s], scaling = constrained)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, ...
 

Plot_2d  
 

> with(plottools); -1
 

> `assign`(ten, circle([0, 0], .2, color = black, thickness = 3)); -1
 

> `assign`(von, line([0, 0], [`+`(l, r), 0], color = black, thickness = 1)); -1
 

> for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
for i to N do `assign`(tenn || i, circle([x[i], y[i]], .2, color = black, thickness = 3)); `assign`(tennn || i, circle([z[i], 0], .2, color = black, thickness = 3)); if `<`(11, i) then `assign`(phi[i]...
 

> for i to 11 do `assign`(wq, `+`(N, `-`(11), i)); `assign`(pic[i], MOZGO[i], KEP[i], cen1, tenn || i, tennn || i, view = [-12 .. 8, -12 .. 12]); `assign`(pic[`+`(i, 11)], display(MOZGO[`+`(N, `-`(11), ...
for i to 11 do `assign`(wq, `+`(N, `-`(11), i)); `assign`(pic[i], MOZGO[i], KEP[i], cen1, tenn || i, tennn || i, view = [-12 .. 8, -12 .. 12]); `assign`(pic[`+`(i, 11)], display(MOZGO[`+`(N, `-`(11), ...
for i to 11 do `assign`(wq, `+`(N, `-`(11), i)); `assign`(pic[i], MOZGO[i], KEP[i], cen1, tenn || i, tennn || i, view = [-12 .. 8, -12 .. 12]); `assign`(pic[`+`(i, 11)], display(MOZGO[`+`(N, `-`(11), ...
for i to 11 do `assign`(wq, `+`(N, `-`(11), i)); `assign`(pic[i], MOZGO[i], KEP[i], cen1, tenn || i, tennn || i, view = [-12 .. 8, -12 .. 12]); `assign`(pic[`+`(i, 11)], display(MOZGO[`+`(N, `-`(11), ...
for i to 11 do `assign`(wq, `+`(N, `-`(11), i)); `assign`(pic[i], MOZGO[i], KEP[i], cen1, tenn || i, tennn || i, view = [-12 .. 8, -12 .. 12]); `assign`(pic[`+`(i, 11)], display(MOZGO[`+`(N, `-`(11), ...
 

> `assign`(T, NULL); -1; for s to 22 do `assign`(q, display(pic[s], ten, von)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-8 .. 12, -8 .. 8], title =
`assign`(T, NULL); -1; for s to 22 do `assign`(q, display(pic[s], ten, von)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-8 .. 12, -8 .. 8], title =
`assign`(T, NULL); -1; for s to 22 do `assign`(q, display(pic[s], ten, von)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-8 .. 12, -8 .. 8], title =
`assign`(T, NULL); -1; for s to 22 do `assign`(q, display(pic[s], ten, von)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-8 .. 12, -8 .. 8], title =
`assign`(T, NULL); -1; for s to 22 do `assign`(q, display(pic[s], ten, von)); `assign`(T, T, q) end do; -1; display([T], scaling = constrained, insequence = true, view = [-8 .. 12, -8 .. 8], title =
 

Plot_2d  
 

>  
 

>