Calculus II
Lesson 9: Integration by Substitution: Worked Examples
> restart;
> with(student);
1.
> p1 := Int(sqrt(9 - x^2)/x^2, x);
> p2 := changevar(x=3*sin(u), p1, u);
Unfortunately, simplify doesn't do what we want here:
> simplify(p2);
The reason is that Maple will not simplify as unless it knows that is positive. We must tell it to assume that is positive; then simplify works. (Why are we allowed to make this assumption?)
> assume(cos(u) >= 0);
> p3 := simplify(p2);
> p4 := subs(-1 + cos(u)^2 = -sin(u)^2, p3);
> p5 := subs(cos(u)^2 / sin(u)^2 = cot(u)^2, p4);
> p6 := subs(cot(u)^2 = csc(u)^2 - 1, p5);
We are down to evaluating and
2.
> p1 := Int(1/(x^2 * sqrt(x^2 + 4)), x);
> p2 := changevar(x = 2*tan(u), p1, u);
3.
> p1 := Int(x^2 / sqrt(x^2 + 4), x);
4.
> p1 := Int(x / sqrt(x^2 + 4), x);
> p2 := changevar(u=x^2 + 4, p1, u);
5.
> p1 := Int(1/sqrt(x^2 - 4), x);
> p2 := changevar(x = 2*sec(u), p1, u);
6.
> p1 := Int( sec(x)*tan(x)*sqrt(1 + sec(x)), x);
> p2 := changevar(u = 1 + sec(x), p1, u);
7.
> p1 := Int(x*sqrt(3*x + 1), x);
> p2 := changevar(u = 3*x+ 1, p1, u);
>
8.
> p1 := Int(x^3 * sqrt(9 - x^2), x);
> p2 := changevar(u = 9 - x^2, p1, u);
9.
> p1 := Int(cos(x)^4 * sin(x), x);
> p2 := changevar(u = cos(x), p1, u);
10.
> p1 := Int(1/( (x+1)^2 + 1)^2, x);
> p2 := changevar(x+1 = tan(u), p1, u);
11.
> p1 := Int(x^3 * sqrt(4 - 9*x^2), x);
> p2 := changevar(u = 4 - 9*x^2, p1, u);
12.
> p1 := Int(x*sqrt(1 + x^4), x);
> p2 := changevar(u = x^2, p1, u);
> p4 := changevar(u = tan(t), p3, t);
> p5 := subs(1 + tan(t)^2 = sec(t)^2, p4);
> assume(sec(t) > 0);
> p6 := simplify(p5, power);
13.
> p1 := Int(x^5 * (x^3 + 1)^(1/3), x);
> p2 := changevar(u = x^3 + 1, p1, u);
14.
> p1 := Int(x/sqrt(1 + 2*x), x);
> p2 := changevar(u = 1 + 2*x, p1, u);
15.
> p1 := Int( exp(x)*sqrt(9 - exp(2*x)), x);
> p2 := changevar(u = exp(x), p1, u);
> p3 := changevar(u = 3*sin(theta), p2, theta);
> assume(cos(theta) >= 0);
> p4 := simplify(p3);
16.
> p1 := Int(arctan(x)/(1 + x^2), x);
> p2 := changevar(u = arctan(x), p1, u);
17.
> p1 := Int(x^4 / sqrt(x^10 - 4), x);
> p2 := changevar(u = x^5, p1, u);
> p4 := changevar(u = 2*sec(phi), p3, phi);
> assume(tan(phi) > 0);
> p5 := simplify(p4);
> p6 := subs(1/cos(phi) = sec(phi), p5);
18.
(This problem and the next two are related; we will use new variables so that we can refer back to this answer without confusion.)
> q1 := Int((x+2)/sqrt(x^2 + 4*x + 6), x);
> q2 := changevar(u = x^2 + 4*x + 6, q1, u);
> q3 := simplify(q2);
> q4 := value(q3);
> q5 := subs(u = x^2 + 4*x + 6, q4);
> q1 = q5 + C;
19.
> r1 := Int(2/sqrt(x^2 + 4*x + 6), x);
> r2 := simplify(r1);
> cs := completesquare(x^2 + 4*x + 6);
> r3 := subs(x^2 + 4*x + 6 = cs, r2);
> r4 := changevar(x+2 = sqrt(2)*tan(u), r3, u);
> r5 := simplify(r4);
> assume(sec(u) > 0);
> r6 := subs(1 + tan(u)^2 = sec(u)^2, r5);
> r7 := simplify(r6, power);
> r8 := value(r7);
> r9 := subs(tan(u) = (x+2)/sqrt(2), sec(u) = sqrt((x^2 + 4*x + 6)/2), r8);
> r10 := simplify(r9);
> r1 = r10 + C;
20.
> s1 := Int(x / sqrt(x^2 + 4*x + 6), x);
Observe that this anti-derivative is just the difference of the previous two:
> s1 = q5 - r10 + C;