Section 2.2 Transformations and Linear Mappings - Maple Application Center
Application Center Applications Section 2.2 Transformations and Linear Mappings

Section 2.2 Transformations and Linear Mappings

: Dr. John Mathews
Engineering software solutions from Maplesoft
This Application runs in Maple. Don't have Maple? No problem!
 Try Maple free for 15 days!
We now take our first look at the geometric interpretation of a complex function. If D is the domain of definition of the real-valued functions u(x, y) and v(x, y) , then the system of equations u = u(x, y) and v = v(x, y) describes a transformation or mapping from D in the xy-plane into the uv-plane. Therefore, the function f(z) = u(x, y)+i*v(x, y) can be considered as a mapping or transformation from the set D in the z-plane onto the range R in the w-plane.

Application Details

Publish Date: October 01, 2003
Created In: Maple V
Language: English



More Like This

Section 1.5 The Algebra of Complex Numbers, Revisited
Section 2.3 The Mappings w = z^n and w = z^`1/n`
Section 1.1 The Origin of Complex Numbers
Section 1.3 The Geometry of Complex Numbers
Section 2.1 Functions of a Complex Variable
Section 2.4 Limits and Continuity
Section 1.4 The Geometry of Complex Numbers, Continued
Section 1.2 The Algebra of Complex Numbers
Section 2.6 The Reciprocal Transformation w = 1/z
Section 1.6 The Topology of Complex Numbers
Section 2.5 Branches of Functions
Section 3.1 Differentiable Functions