prem - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Algebra : Polynomials : prem

prem

pseudo-remainder of polynomials

sprem

sparse pseudo-remainder of polynomials

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

prem(a, b, x, 'm', 'q')

sprem(a, b, x, 'm', 'q')

Parameters

a, b

-

multivariate polynomials in the variable x

x

-

indeterminate

m, q

-

(optional) unevaluated names

Description

• 

The function prem  returns the pseudo-remainder r such that

ma=bq+r

  

where degreer&comma;x<degreeb&comma;x and m (the multiplier) is:

  

 

m&equals;lcoeffb&comma;xdegreea&comma;xdegreeb&comma;x&plus;1

• 

If the fourth argument is present it is assigned the value of the multiplier m defined above.  If the fifth argument is present, it is assigned the pseudo-quotient q defined above.

• 

The function sprem has the same functionality as prem except that the multiplier m will be lcoeffb&comma;x to the power of the number of division steps performed rather than the degree difference. When sprem can be used it is preferred because it is more efficient.

Examples

ax4&plus;1&colon;bcx2&plus;1&colon;

rprema&comma;b&comma;x&comma;&apos;m&apos;&comma;&apos;q&apos;&colon;

r&comma;m&comma;q

cc2&plus;1&comma;c3&comma;ccx21

(1)

rsprema&comma;b&comma;x&comma;&apos;m&apos;&comma;&apos;q&apos;&colon;

r&comma;m&comma;q

c2&plus;1&comma;c2&comma;cx21

(2)

See Also

Prem

quo

rem

Sprem

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam