Jacobi ODEs - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Differential Equations : Classifying ODEs : Second Order : odeadvisor/Jacobi

Jacobi ODEs

 

Description

Examples

Description

• 

The general form of the Jacobi ODE is given by the following:

Jacobi_ode := diff(y(x),x,x)*x*(1-x) = (g-(a+1)*x)*diff(y(x),x)+n*(a+n)*y(x);

Jacobi_ode:=ⅆ2ⅆx2yxx1x=ga+1xⅆⅆxyx+na+nyx

(1)
  

where n is an integer. See Iyanaga and Kawada, "Encyclopedic Dictionary of Mathematics", p. 1480.

Examples

The solution to this type of ODE can be expressed in terms of the hypergeometric function; see hypergeom.

withDEtools,odeadvisor

odeadvisor

(2)

odeadvisorJacobi_ode

_Jacobi

(3)

dsolveJacobi_ode

yx=_C1hypergeom112a12a2+4n+4a4n2+4,112a+12a2+4n+4a4n2+4,g,x+_C2x1+ghypergeom12a12a2+4n+4a4n2+4+g,12a+12a2+4n+4a4n2+4+g,2+g,x

(4)

See Also

DEtools

odeadvisor

dsolve

quadrature

missing

reducible

linear_ODEs

exact_linear

exact_nonlinear

sym_Fx

linear_sym

Bessel

Painleve

Halm

Gegenbauer

Duffing

ellipsoidal

elliptic

erf

Emden

Jacobi

Hermite

Lagerstrom

Laguerre

Liouville

Lienard

Van_der_Pol

Titchmarsh

odeadvisor,types

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam