IsMatrixShape - Maple Programming Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Linear Algebra : LinearAlgebra Package : Data Structures : IsMatrixShape

IsMatrixShape

determine if a Matrix has a specified shape

IsVectorShape

determine if a Vector has a specified shape

 

Calling Sequence

Parameters

Description

Examples

Calling Sequence

IsMatrixShape(A, shape)

IsVectorShape(V, shape)

Parameters

A

-

Matrix

V

-

Vector

shape

-

name of the shape

Description

• 

The IsMatrixShape(A, shape) function determines whether Matrix A has the specified shape. A Matrix has one of the following built-in shapes if it satisfies the listed condition:

  

zero

  

All entries are 0.

  

identity

  

All entries along the main diagonal are 1, and 0 elsewhere.

  

scalar

  

All entries along the main diagonal have the same value, and are 0 elsewhere. This shape can also be indexed, in which case the entries along the main diagonal must have the value specified by the index.

  

diagonal

  

All non-zero entries appear on the main diagonal.

  

constant

  

All entries have the same value. This shape can also be indexed, in which case all entries have the value specified by the index.

  

band[b], band[u,l]

  

If a single index is given, all non-zero entries must lie on the b sub- and super-diagonals or on the main diagonal. If two indices are given, all non-zero entries must lie on the u subdiagonals, l superdiagonals or on the main diagonal.

  

symmetric

  

The Matrix must be square and for all i and j, Mi,j=Mj,i.

  

skewsymmetric, antisymmetric

  

The Matrix must be square and for all i and j, Mi,j=Mj,i.

  

hermitian

  

The Matrix must be square and for all i and Mi,j=Mj,i&conjugate0;.

  

skewhermitian, antihermitian

  

The Matrix must be square and for all i and j, Mi,j=Mj,i&conjugate0;.

  

triangular

  

This shape may be given with the indices upper or lower. If no index is given, it defaults to triangular[upper]. A matrix is upper (lower) triangular if all the non-zero entries appear in the upper (lower) triangle. If the optional second index unit is given, all entries on the main diagonal must be 1 as well.

  

Hessenberg

  

This shape may be given with the indices upper or lower. If no index is given, it defaults to Hessenberg[upper]. A matrix is upper (lower) Hessenberg if all the non-zero entries appear in the upper (lower) triangle and first subdiagonal (superdiagonal).

  

Additional Shapes

  

Users can make additional shapes known to this routine by defining a Maple procedure. If the procedure `IsMatrixShape/myshape` is defined then the function call IsMatrixShape(M, myshape) will invoke `IsMatrixShape/myshape`(M).

  

If shape is not a recognized built-in or user-defined shape, this routine returns false.

  

If either or both of the row and column dimension of A is zero, IsMatrixShape returns true (regardless of shape).

• 

The IsVectorShape(V, shape) function determines whether V has the specified shape. A Vector has one of the following built-in shapes if it satisfies the listed condition:

  

zero

  

All entries must be 0.

  

unit

  

V must have exactly one non-zero entry which contains 1. This shape can also be indexed, in which case the index specifies the position where the one appears.

  

scalar

  

V must have exactly one non-zero entry. This shape can also be indexed using two values j and x, in which case the jth entry of V must contain x.

  

constant

  

All entries have the same value. This shape can also be indexed, in which case all entries have the value specified by the index.

  

Additional Shapes

  

Users can make additional shapes known to this routine by defining a Maple procedure. If the procedure `IsVectorShape/myshape` is defined, then the function call IsVectorShape(V, myshape) will invoke IsVectorShape/myshapeV.

  

If shape is not a recognized built-in or user-defined shape, this routine returns false.

  

If the dimension of V is 0, IsVectorShape returns true (regardless of shape).

• 

For information regarding permissible options in Matrices and Vectors, see the Matrix and Vector constructor pages.

Examples

withLinearAlgebra:

BBandMatrix1,4,1,1,4

B:=4100141001410014

(1)

IsMatrixShapeB,triangular

false

(2)

IsMatrixShapeB,Hessenberg

true

(3)

IsMatrixShapeB,band1,1

true

(4)

V0|1|0|0

V:=0100

(5)

IsVectorShapeV,unit

true

(6)

IsVectorShapeV,unit[3]

false

(7)

A Matrix M is idempotent if M . M = M

`IsMatrixShape/idempotent` := proc(M)
   evalb( type(M, 'Matrix'(square)) and Equal(M . M, M) );
end proc:

IsMatrixShape0,1|1,0,idempotent

false

(8)

IsMatrixShape23,13,13|13,23,13|13,13,23,idempotent

true

(9)

See Also

Matrix

MatrixOptions

Vector

VectorOptions

 


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam