inert gcd function - Maple Help

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : Group Theory : Numbers : Gcd

Gcd - inert gcd function

Calling Sequence

Gcd(a, b)

Gcd(a, b, 's', 't')

Parameters

a, b

-

multivariate polynomials

s, t

-

(optional) unevaluated names

Description

• 

The Gcd function is a placeholder for representing the greatest common divisor  of a and b where a and b are polynomials. If s and t are specified, they are assigned the cofactors. Gcd is used in conjunction with either mod, modp1 or evala as described below which define the coefficient domain.

• 

The call Gcd(a, b) mod p  computes the greatest common divisor of a and b modulo p a prime integer. The inputs a and b must be polynomials over the rationals or over a finite field specified by RootOf expressions.

• 

The call modp1(Gcd(a, b), p) does likewise for a and b, polynomials in the modp1 representation.

• 

The call  evala(Gcd(a, b))  does likewise for a and b, multivariate polynomials with algebraic coefficients defined by RootOf or radicals expressions. See evala,Gcd for more information.

Examples

Gcdx+2,x+3mod7

1

(1)

Gcdx2+3x+2,x2+4x+3,'s','t'mod11

x+1

(2)

s,t

x+2,x+3

(3)

evalaGcdx2x212x+212,x22,'s1','t1'

x2

(4)

s1,t1

x1,x+2

(5)

evalaGcdx2z2,xRootOf_Z2z3

xRootOf_Z2z2

(6)

See Also

evala, gcd, Gcdex, mod, RootOf


Download Help Document

Was this information helpful?



Please add your Comment (Optional)
E-mail Address (Optional)
What is ? This question helps us to combat spam