Game Theory: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=139
en-us2015 Maplesoft, A Division of Waterloo Maple Inc.Maplesoft Document SystemFri, 27 Mar 2015 11:59:18 GMTFri, 27 Mar 2015 11:59:18 GMTNew applications in the Game Theory categoryhttp://www.mapleprimes.com/images/mapleapps.gifGame Theory: New Applications
http://www.maplesoft.com/applications/category.aspx?cid=139
Hollywood Math 2
http://www.maplesoft.com/applications/view.aspx?SID=153681&ref=Feed
<p>Over the years, Hollywood has entertained us with many mathematical moments in film and television, often in unexpected places. In this application, you’ll find several examples of Hollywood Math, including Fermat’s Last Theorem and <em>The Simpsons</em>, the Monty Hall problem in <em>21</em>, and a discussion of just how long that runway actually was in <em>The Fast and the Furious</em>. These examples are also presented in <a href="/webinars/recorded/featured.aspx?id=782">Hollywood Math 2: The Recorded Webinar</a>.</p>
<p>For even more examples, see <a href="/applications/view.aspx?SID=6611">Hollywood Math: The Original Episode</a>.</p><img src="/view.aspx?si=153681/HollywoodMath2.jpg" alt="Hollywood Math 2" align="left"/><p>Over the years, Hollywood has entertained us with many mathematical moments in film and television, often in unexpected places. In this application, you’ll find several examples of Hollywood Math, including Fermat’s Last Theorem and <em>The Simpsons</em>, the Monty Hall problem in <em>21</em>, and a discussion of just how long that runway actually was in <em>The Fast and the Furious</em>. These examples are also presented in <a href="/webinars/recorded/featured.aspx?id=782">Hollywood Math 2: The Recorded Webinar</a>.</p>
<p>For even more examples, see <a href="/applications/view.aspx?SID=6611">Hollywood Math: The Original Episode</a>.</p>153681Tue, 23 Sep 2014 04:00:00 ZMaplesoftMaplesoftStreet-fighting Math
http://www.maplesoft.com/applications/view.aspx?SID=129226&ref=Feed
This interactive Maple document contains a simple street-fighting game and performs a mathematical analysis of it, involving probability and game theory. The document is suitable for presentation in an undergraduate course on operations research, probability or linear programming. No knowledge of Maple is required.<img src="/view.aspx?si=129226/fighter_sm.jpg" alt="Street-fighting Math" align="left"/>This interactive Maple document contains a simple street-fighting game and performs a mathematical analysis of it, involving probability and game theory. The document is suitable for presentation in an undergraduate course on operations research, probability or linear programming. No knowledge of Maple is required.129226Thu, 29 Dec 2011 05:00:00 ZDr. Robert IsraelDr. Robert IsraelThe Hawk-Dove-Retaliator Game
http://www.maplesoft.com/applications/view.aspx?SID=98755&ref=Feed
<p>In 1973, John Maynard Smith and George R. Price published a paper entitled "The Logic of Animal Conflict" in Nature, in which they formalized the concept of evolutionarily stable strategies (ESS) and launched the field of Evolutionary Game Theory. Subsequently, Maynard Smith published a book Evolution and the Theory of Games to present his ideas in a coherent form. This worksheet demonstrates how to use Maple to visualize the Hawk-Dove-Retaliator game---one of the most important examples of game theory. This worksheet can be modified for other two-player three-strategy games. <br /></p><img src="/view.aspx?si=98755/maple_icon.jpg" alt="The Hawk-Dove-Retaliator Game" align="left"/><p>In 1973, John Maynard Smith and George R. Price published a paper entitled "The Logic of Animal Conflict" in Nature, in which they formalized the concept of evolutionarily stable strategies (ESS) and launched the field of Evolutionary Game Theory. Subsequently, Maynard Smith published a book Evolution and the Theory of Games to present his ideas in a coherent form. This worksheet demonstrates how to use Maple to visualize the Hawk-Dove-Retaliator game---one of the most important examples of game theory. This worksheet can be modified for other two-player three-strategy games. <br /></p>98755Mon, 08 Nov 2010 05:00:00 ZDr. Frank WangDr. Frank WangEvolutionarily stable strategies
http://www.maplesoft.com/applications/view.aspx?SID=3610&ref=Feed
Consider a population in which there are conflicts. Each individual has fitness w prior to the conflict, and its fitness changes after the conflict. The average fitness of an individual is its baseline fitness plus the fitness change resulting from an encounter with another individual, weighted by the probability of such an encounter. For a population with 2 types of individuals, H and D, in proportion p and (1-p) in the population, the fitness wh of type H individuals is dependent upon the fitness change ehh associated with encountering another H individual ( the probability of such an encounter is p), and the fitness change ehd associated with encountering a D individual (the probability of such an encounter is 1-p):
<img src="/view.aspx?si=3610//applications/images/app_image_blank_lg.jpg" alt="Evolutionarily stable strategies" align="left"/>Consider a population in which there are conflicts. Each individual has fitness w prior to the conflict, and its fitness changes after the conflict. The average fitness of an individual is its baseline fitness plus the fitness change resulting from an encounter with another individual, weighted by the probability of such an encounter. For a population with 2 types of individuals, H and D, in proportion p and (1-p) in the population, the fitness wh of type H individuals is dependent upon the fitness change ehh associated with encountering another H individual ( the probability of such an encounter is p), and the fitness change ehd associated with encountering a D individual (the probability of such an encounter is 1-p):
3610Mon, 18 Jun 2001 00:00:00 ZMatt MillerMatt MillerTwo-player matrix games
http://www.maplesoft.com/applications/view.aspx?SID=3611&ref=Feed
This package provides Maple functions for the analysis of two players matrix games. Functions applicable to zero-sum and non-zero-sum games are included<img src="/view.aspx?si=3611//applications/images/app_image_blank_lg.jpg" alt="Two-player matrix games " align="left"/>This package provides Maple functions for the analysis of two players matrix games. Functions applicable to zero-sum and non-zero-sum games are included3611Mon, 18 Jun 2001 00:00:00 ZNigel BackhouseNigel Backhouse