padic[orderp] - the order of a p-adic expansion of a rational function
padic[lcoeffp] - the leading coefficient of a p-adic expansion of a rational function
|
Calling Sequence
|
|
orderp(ex, p, x)
lcoeffp(ex, p, x)
|
|
Parameters
|
|
ex
|
-
|
rational function
|
p
|
-
|
irreducible (or square-free) polynomial or 1/x (or infinity)
|
x
|
-
|
independent variable
|
|
|
|
|
Description
|
|
•
|
The orderp command computes the order at p of the p-adic expansion of a rational function ex in x.
|
•
|
The lcoeffp command computes the leading coefficient at p of the p-adic expansion of a rational function ex in x.
|
|
|
Examples
|
|
>
|
|
>
|
|

| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
![p_adic(1/x, -1, [1, -3, 4, 4, -32, 76])[3][1]/``(1/x)+p_adic(1/x, -1, [1, -3, 4, 4, -32, 76])[3][2]/``(1/x)^2+p_adic(1/x, -1, [1, -3, 4, 4, -32, 76])[3][3]/``(1/x)^3+p_adic(1/x, -1, [1, -3, 4, 4, -32, 76])[3][4]/``(1/x)^4+p_adic(1/x, -1, [1, -3, 4, 4, -32, 76])[3][5]/``(1/x)^5+p_adic(1/x, -1, [1, -3, 4, 4, -32, 76])[3][6]/``(1/x)^6+O(``(1/x)^5)](/support/helpjp/helpview.aspx?si=9069/file04405/math124.png)
| (4) |
>
|
|
| (5) |
>
|
|
| (6) |
|
|