>
|
|
Example 1.
Define a manifold S with coordinates [t, x, y, z].
>
|
|
| (2.1) |
Define a metric g.
S >
|
|
| (2.2) |
Define an orthonormal tetrad OTetrad for the metric g. Use GRQuery to check that OTetrad is indeed an orthonormal tetrad.
S >
|
|
| (2.3) |
S >
|
|
| (2.4) |
Construct a null tetrad NTetrad from the orthonormal tetrad OTetrad.
S >
|
|
| (2.5) |
Calculate the NP spin coefficients defined by the null tetrad NTetrad.
S >
|
|
| (2.6) |
The individual spin coefficients can be extracted from the table SpinCoeff.
S >
|
|
| (2.7) |
Example 2.
With the keyword argument output = "sequence", the command NPSpinCoefficients will return the spin coefficients as a sequence. (Note that gamma is protected by Maple.)
S >
|
|
| (2.8) |
Example 3.
We check the results from Example 2 against the definitions of the spin-coefficients. First define the null tetrad.
S >
|
|
| (2.9) |
Define the dual basis.
S >
|
|
| (2.10) |
Calculate the Christoffel connection.
S >
|
|
| (2.11) |
1. kappa = nabla_L(Theta_N)(M)
S >
|
|
| (2.12) |
2. rho = nabla_barM(Theta_N)(M)
S >
|
|
| (2.13) |
3. sigma = nabla_M(Theta_N)(M)
S >
|
|
| (2.14) |
4. tau = nabla_N(Theta_N)(M)
S >
|
|
| (2.15) |
5. pi = - nabla_N(Theta_L)(barM)
S >
|
|
| (2.16) |
6. lambda = -nabla_barM(Theta_L)(barM)
S >
|
|
| (2.17) |
7. mu = nabla_M(Theta_L)(barM)
S >
|
|
| (2.18) |
8. nu = nabla_N(Theta_L)(barM)
S >
|
|
| (2.19) |
9. alpha = 1/2*nabla_barM(Theta_N)(N) + nabla_barM(Theta_barM)(barM)
S >
|
|
| (2.20) |
10. beta = 1/2*nabla_M(Theta_N)(N) + 1/2*nabla_M(Theta_barM)(barM)
S >
|
|
| (2.21) |
11. gamma =1/2*nabla_N(Theta_N)(N) + 1/2*nabla_N(Theta_barM)(barM)
S >
|
|
| (2.22) |
12. epsilon = 1/2*nabla_L(Theta_N)(N) + 1/2*nabla_L(Theta_barM)(barM)
S >
|
|
| (2.23) |
Example 4
When working with the NP formalism, it is usually advantageous to work with the anholonomic frame defined by the null tetrad. To create anholonomic frames in DifferentialGeometry, see FrameData.
S >
|
|
| (2.24) |
S >
|
|
| (2.25) |
We can now calculate the spin coefficients for the null tetrad with the second calling sequence.
NP >
|
|
| (2.26) |
NP >
|
|