|
|
"BiformDegree"
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y], [u], E, 2):
|
Example 1.
>
|
alpha1 := evalDG(Dx &wedge Dy);
|
| (1) |
>
|
DGinfo(alpha1, "BiformDegree");
|
| (2) |
Example 2.
>
|
alpha2 := evalDG(Dx &wedge Cu[]);
|
| (3) |
>
|
DGinfo(alpha2, "BiformDegree");
|
| (4) |
Example 3.
>
|
alpha3 := evalDG(Cu[1] &wedge Cu[2]);
|
| (5) |
>
|
DGinfo(alpha3, "BiformDegree");
|
| (6) |
|
|
"CoefficientList": list some or all of the coefficients of a vector, differential form, or tensor.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y, z, w], M):
|
>
|
alpha := evalDG(a*dx &w dy + b*dx &w dz + c*dy &w dz + d*dx &w dw + e*dz &w dw);
|
| (7) |
>
|
DGinfo(alpha, "CoefficientList", "all");
|
| (8) |
>
|
DGinfo(alpha, "CoefficientList", [dx &w dy, dx &w dz, dy &w dw]);
|
| (9) |
>
|
DGinfo(alpha, "CoefficientList", [[1,2], [1,3], [2,4]]);
|
| (10) |
|
|
"CoefficientSet": find the set of all the coefficients of a vector, differential form, or tensor.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y, z, w], M):
|
Example 1.
>
|
alpha := evalDG(a*dx &w dy + b*dx &w dz + b*dy &w dz + c*dx &w dw + a*dz &w dw);
|
| (11) |
>
|
DGinfo(alpha, "CoefficientSet");
|
| (12) |
Example 2.
| (13) |
>
|
DGinfo(X, "CoefficientSet");
|
| (14) |
|
|
"CoefficientList": list some or all of the coefficients of a vector, "differential form, or tensor.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y, z, w], M):
|
>
|
alpha := evalDG(a*dx &w dy + b*dx &w dz + c*dy &w dz + d*dx &w dw + e*dz &w dw);
|
| (15) |
>
|
DGinfo(alpha, "CoefficientList", "all");
|
| (16) |
>
|
DGinfo(alpha, "CoefficientList", [dx &w dy, dx &w dz, dy &w dw]);
|
| (17) |
>
|
DGinfo(alpha, "CoefficientList", [[1,2], [1,3], [2,4]]);
|
| (18) |
|
|
"DiffeqType": find the type of the system of differential equations
|
|
>
|
with(DifferentialGeometry): with(JetCalculus): with(Tools):
|
>
|
DGsetup([x, y], [u, v], E, 2):
|
>
|
Delta := DifferentialEquationData([u[2] + v[1], u[1] - v[2]], [u[1], v[1]]);
|
| (19) |
>
|
DGinfo(Delta, "DiffeqType");
|
| (20) |
|
|
"DiffeqVariables": list the jet variables in the differential equation to be solved for
|
|
>
|
with(DifferentialGeometry): with(JetCalculus): with(Tools):
|
>
|
DGsetup([x, y], [u, v], E, 2):
|
>
|
Delta := DifferentialEquationData([u[2] + v[1], u[1] - v[2]], [u[1], v[1]]);
|
| (21) |
>
|
DGinfo(Delta, "DiffeqVariables");
|
| (22) |
|
|
"FormDegree": the degree of a differential form
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
Example 1.
>
|
alpha := evalDG(dx +dy);
|
| (23) |
>
|
DGinfo(alpha, "FormDegree");
|
| (24) |
Example 2.
>
|
beta := evalDG(3*dx &w dy + 4*dy &w dz - dx &w dz);
|
| (25) |
>
|
DGinfo(beta, "FormDegree");
|
| (26) |
Example 3.
>
|
nu := evalDG(dx &w dy &w dz);
|
| (27) |
>
|
DGinfo(nu, "FormDegree");
|
| (28) |
|
|
"FunctionOrder": the order of the highest jet coordinate appearing in a Maple expression.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
Example 1.
>
|
DGsetup([x, y], [u, v], E):
|
| (29) |
>
|
DGinfo(f1, "FunctionOrder");
|
| (30) |
Example 2.
>
|
DGsetup([x, y], [u], J, 1):
|
| (31) |
>
|
DGinfo(f1, "FunctionOrder");
|
| (32) |
Example 3.
>
|
f1 := u[1, 1, 2]*x + u[2, 2, 2, 2];
|
| (33) |
>
|
DGinfo(f1, "FunctionOrder");
|
| (34) |
|
|
"ObjectAttributes": list all the properties of a vector, differential form, tensor, or transformation.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y, z], M): DGsetup([u, v], N):
|
Example 1.
>
|
X := evalDG(a*D_x + b*D_y + c*D_z);
|
| (35) |
>
|
DGinfo(X, "ObjectAttributes");
|
| (36) |
Example 2.
>
|
alpha := evalDG(d*dx &w dy + e*dx &w dz + f*dy &w dz);
|
| (37) |
>
|
DGinfo(alpha, "ObjectAttributes");
|
| (38) |
Example 3.
>
|
T := evalDG(r*D_x &t dx + s*D_z&t dy + t*D_z &t dx);
|
| (39) |
>
|
DGinfo(T, "ObjectAttributes");
|
| (40) |
Example 4.
>
|
Phi := Transformation(M, N, [u = x^2 + y^2 + z^2, v = x*y*z]);
|
| (41) |
>
|
DGinfo(Phi, "ObjectAttributes");
|
| (42) |
Example 5.
>
|
DGsetup([[gamma1, gamma2, gamma3, gamma4], chi = dgform(3)], [], P):
|
>
|
ExteriorDerivative(chi);
|
| (43) |
>
|
DGinfo(dchi, "ObjectAttributes");
|
| (44) |
Example 6.
| (45) |
>
|
DGinfo(i_1chi, "ObjectAttributes");
|
| (46) |
Example 7.
>
|
Hook([D_gamma2, D_gamma3], chi);
|
| (47) |
>
|
DGinfo(i_2_3chi, "ObjectAttributes");
|
| (48) |
|
|
"ObjectComponents": list all the components of a vector, differential form, tensor, or transformation.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y, z], M): DGsetup([u, v], N):
|
Example 1.
>
|
X := evalDG(a*D_x + b*D_y + c*D_z);
|
| (49) |
>
|
DGinfo(X, "ObjectComponents");
|
| (50) |
Example 2.
>
|
alpha := evalDG(d*dx &w dy + e*dx &w dz + f*dy &w dz);
|
| (51) |
>
|
DGinfo(alpha, "ObjectComponents");
|
| (52) |
Example 3.
>
|
T := evalDG(r*D_x &t dx + s*D_z&t dy + t*D_z &t dx);
|
| (53) |
>
|
DGinfo(T, "ObjectComponents");
|
| (54) |
Example 4.
>
|
Phi := Transformation(M, N, [u = x^2 + y^2 + z^2, v= x*y*z]);
|
| (55) |
>
|
DGinfo(Phi, "ObjectComponents");
|
| (56) |
|
|
"ObjectFrame": return the frame with respect to which the object is defined.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y], [u], M, 1): DGsetup([r,s,t], N):
|
Example 1.
>
|
X := evalDG(D_x -3*D_y);
|
| (57) |
>
|
DGinfo(X, "ObjectFrame");
|
| (58) |
Example 2.
>
|
T := evalDG(D_r &t D_s &t dt);
|
| (59) |
>
|
DGinfo(T, "ObjectFrame");
|
| (60) |
|
|
"ObjectGenerators": list the monomial vectors in a vector or the monomial 1-forms in a differential form.
|
|
>
|
with(DifferentialGeometry): with(Tools):
|
>
|
DGsetup([x, y, z, w], M):
|
Example 1.
>
|
X := evalDG(y*D_x + z*D_z);
|
| (61) |
>
|
DGinfo(X, "ObjectGenerators");
|
| (62) |
This means that X has only the 1st and 3rd elements from the standard basis for the tangent bundle.
Example 2.
>
|
alpha := evalDG(w*dx &w dy + x*dx &w dw + z^2*dy &w dw);
|
| (63) |
>
|
DGinfo(alpha, "ObjectGenerators");
|
| (64) |
This means that alpha do not contain the 3rd element (dz) from the standard basis for the cotangent bundle.
|
|
"ObjectOrder": the order of the jet space on which the object is defined.
|
|
>
|
with(DifferentialGeometry): with(JetCalculus): with(Tools):
|
Example 1.
>
|
DGsetup([x, y], [u, v], E, 3):
|
| (65) |
>
|
DGinfo(f, "ObjectOrder");
|
| (66) |
Example 2.
>
|
alpha := evalDG(du[1]*x + du[2,2]);
|
| (67) |
>
|
DGinfo(alpha, "ObjectOrder");
|
| (68) |
Example 3.
>
|
beta := evalDG(du[1, 1, 2]*x + u[2, 2, 2, 2]*dy);
|
| (69) |
>
|
DGinfo(beta, "FunctionOrder");
|
| (70) |
Example 4.
>
|
X := evalDG(u[1]*D_u[]);
|
| (71) |
| (72) |
>
|
DGinfo(X3, "FunctionOrder");
|
| (73) |
|
|
"ObjectType": the type of the 'DifferentialGeometry' object.
|
|
>
|
with(DifferentialGeometry): with(Tools): with(LieAlgebras):
|
>
|
DGsetup([x, y], [u], M, 1):
|
Example 1.
| (74) |
>
|
DGinfo(f, "ObjectType");
|
| (75) |
Example 2.
>
|
X := evalDG(D_x + y*D_u[]);
|
| (76) |
>
|
DGinfo(X, "ObjectType");
|
| (77) |
Example 3.
>
|
alpha := evalDG(dx &w dy + dx &w du[1]);
|
| (78) |
>
|
DGinfo(alpha, "ObjectType");
|
| (79) |
Example 4.
>
|
theta := evalDG(Dx &w Cu[1]);
|
| (80) |
>
|
DGinfo(theta, "ObjectType");
|
| (81) |
| |