>
|
![with(DifferentialGeometry)](/support/helpjp/helpview.aspx?si=6560/file05760/math133.png)
|
Example 1.
Create the jet space J^3(E) for the bundle E = R x R with coordinates (x, u) -> (x).
>
|
|
Show that the EulerLagrange form for omega1 is 0 so that omega1 is dH exact.
E >
|
|
| (2.1) |
E >
|
|
| (2.2) |
Apply the horizontal homotopy operator to omega1.
E >
|
|
| (2.3) |
Check that the horizontal exterior derivative of eta1 gives omega1.
E >
|
|
| (2.4) |
Example 2.
Show that the integration by parts operator for the type (1, 2) omega2 is 0 so that omega2 is dH exact.
E >
|
|
| (2.5) |
E >
|
|
| (2.6) |
Apply the horizontal homotopy operator to omega2.
E >
|
|
| (2.7) |
Example 3.
Show that the Euler-Lagrange form for omega3 is 0 so that omega3 is dH exact.
E >
|
|
| (2.8) |
E >
|
|
| (2.9) |
E >
|
|
| (2.10) |
Apply the horizontal homotopy operator to omega3. Because omega3 is singular at u[2] = 0 we change the integration limits in the homotopy formula but still perform a radial integration. See HorizontalExteriorDerivative for a detailed discussion.
E >
|
|
| (2.11) |
Check that HorizontalExteriorDerivative of eta3 gives omega3.
E >
|
|
| (2.12) |
Instead of changing the limits of integration we can change the integration path to a sequence of coordinate lines. See HorizontalExteriorDerivative for a detailed discussion.
E >
|
|
>
|
|
>
|
![opt := intmethod = "ExteriorDerivativeHomotopy", path = "zigzag", variableorder = [x, u[], u[1], u[1, 1], u[1, 1, 1], u[1, 1, 1, 1], u[1, 1, 1, 1, 1]], initialpoint = [u[1, 1] = 1]](/support/helpjp/helpview.aspx?si=6560/file05760/math326.png)
|
![opt := intmethod = "ExteriorDerivativeHomotopy", path = "zigzag", variableorder = [x, u[], u[1], u[1, 1], u[1, 1, 1], u[1, 1, 1, 1], u[1, 1, 1, 1, 1]], initialpoint = [u[1, 1] = 1]](/support/helpjp/helpview.aspx?si=6560/file05760/math329.png)
| (2.13) |
E >
|
|
| (2.14) |
Example 4.
Create the jet space J^2(E) for the bundle E = R^3 x R^2 with coordinates (x, y, u, v) -> (x, y).
E >
|
|
Define a type(1, 0) form omega4 and check that it is closed.
E2 >
|
|
| (2.15) |
E2 >
|
|
| (2.16) |
Apply the horizontal homotopy operator to omega4 to define eta4.
E2 >
|
|
| (2.17) |
Check that omega4 = dH(eta4).
E2 >
|
|
| (2.18) |
Define a type(2, 0) form omega5 and check that its Euler-Lagrange form vanishes identically.
E2 >
|
|
| (2.19) |
E2 >
|
|
| (2.20) |
E2 >
|
|
![eta5a := ((7/12)*(u[1, 2]*v[1])-(1/4)*(v[1]*u[1])-(1/6)*(u[2]*v[1, 1])+(1/12)*(u[1]*v[1, 2])-(1/4)*(v[]*u[1, 1])-(1/4)*(v[]*u[1, 1, 2])+(1/12)*(u[]*v[1, 1, 2]))*Dx+(-(1/6)*(u[2, 2]*v[1])+(3/4)*(u[1]*v[2])-(1/4)*(v[2]*u[1, 2])-(1/12)*(u[2]*v[1, 2])-(1/4)*(v[]*u[1, 2])-(1/4)*(v[]*u[1, 2, 2])+(1/12)*(u[]*v[1, 2, 2]))*Dy](/support/helpjp/helpview.aspx?si=6560/file05760/math427.png)
| (2.21) |
E2 >
|
|
| (2.22) |
So omega5 = dH(eta5a) but we can often find a much simpler answer.
E2 >
|
|
![opt := intmethod = "ExteriorDerivativeHomotopy", path = "zigzag", variableorder = [x, y, u[], v[], u[1], u[2], v[1], v[2], u[1, 1], u[1, 2], u[2, 2], v[1, 1], v[1, 2], v[2, 2], u[1, 1, 1], u[1, 1, 2], u[1, 2, 2], u[2, 2, 2], v[1, 1, 1], v[1, 1, 2], v[1, 2, 2], v[2, 2, 2]]](/support/helpjp/helpview.aspx?si=6560/file05760/math447.png)
| (2.23) |
E2 >
|
|
| (2.24) |
E2 >
|
|
| (2.25) |
E2 >
|
|