|
NAG[f08akc] NAG[nag_dormlq] - Apply orthogonal transformation determined by f08ahc (nag_dgelqf)
|
|
Calling Sequence
f08akc(side, trans, k, a, tau, c, 'm'=m, 'n'=n, 'fail'=fail)
nag_dormlq(. . .)
Parameters
|
side - String;
|
|
|
Constraint: "Nag_LeftSide" or "Nag_RightSide". .
|
|
|
trans - String;
|
|
|
Constraint: "Nag_NoTrans" or "Nag_Trans". .
|
|
|
k - integer;
|
|
|
On entry: , the number of elementary reflectors whose product defines the matrix .
|
|
if , ;
|
|
if , .
|
|
|
a - Matrix(1..dim1, 1..dim2, datatype=float[8], order=order);
|
|
|
Note: this array may be supplied in Fortran_order or C_order , as specified by order. All array parameters must use a consistent order.
|
|
On entry: details of the vectors which define the elementary reflectors, as returned by f08ahc (nag_dgelqf).
|
|
|
tau - Vector(1..dim, datatype=float[8]);
|
|
|
Note: the dimension, dim, of the array tau must be at least .
|
|
|
c - Matrix(1..dim1, 1..dim2, datatype=float[8], order=order);
|
|
|
Note: this array may be supplied in Fortran_order or C_order , as specified by order. All array parameters must use a consistent order.
|
|
|
'm'=m - integer; (optional)
|
|
|
Default value: the first dimension of the array c.
|
|
On entry: , the number of rows of the matrix .
|
|
Constraint: . .
|
|
|
'n'=n - integer; (optional)
|
|
|
Default value: the second dimension of the array c.
|
|
On entry: , the number of columns of the matrix .
|
|
Constraint: . .
|
|
|
'fail'=fail - table; (optional)
|
|
|
The NAG error argument, see the documentation for NagError.
|
|
|
|
Description
|
|
|
Purpose
|
|
nag_dormlq (f08akc) multiplies an arbitrary real matrix by the real orthogonal matrix from an factorization computed by f08ahc (nag_dgelqf).
|
|
Description
|
|
nag_dormlq (f08akc) is intended to be used after a call to f08ahc (nag_dgelqf), which performs an factorization of a real matrix . The orthogonal matrix is represented as a product of elementary reflectors.
This function may be used to form one of the matrix products
overwriting the result on (which may be any real rectangular matrix).
|
|
Error Indicators and Warnings
|
|
"NE_ALLOC_FAIL"
Dynamic memory allocation failed.
"NE_BAD_PARAM"
On entry, argument had an illegal value.
"NE_ENUM_INT_3"
On entry, , , , . Constraint: if , .
On entry, , , , . Constraint: if , .
"NE_INT"
On entry, . Constraint: .
On entry, . Constraint: .
"NE_INTERNAL_ERROR"
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
|
|
Accuracy
|
|
The computed result differs from the exact result by a matrix such that
where is the machine precision.
|
|
Further Comments
|
|
The total number of floating-point operations is approximately if and if .
The complex analogue of this function is f08axc (nag_zunmlq).
|
|
|
Examples
|
|
>
|
side := "Nag_LeftSide":
trans := "Nag_Trans":
m := 6:
n := 2:
k := 4:
a := Matrix([[7.629239804856051, -0.2513556382632653, 0.2820087648807367, -0.02069086046679318, -0.1578636020799776, -0.03525109561009208], [0.1206804378352315, 6.484792689972742, 0.2614412741025646, 0.1032576018728744, 0.4200952042988654, 0.007010589007406895], [0.1021464811610684, -1.661861465322362, -5.426581112124191, 0.605137487741764, -0.5386683512562429, 0.1685937776381602], [1.476634669791005, 0.1088236918688469, 0.4222885621904238, 6.255531937917222, -0.1704479056684627, -0.3498629724431616]], datatype=float[8]):
tau := Vector([1.710424647623495, 1.592936535590086, 1.187099434147982, 1.736930441655314], datatype=float[8]):
c := Matrix([[-0.3761842691290461, -0.6855204625592025], [0.2583580019290119, 0.05747738245248696], [0.5624570664128612, -0.9076696447114655], [0.1182716488230685, -1.122317523043419], [0, 0], [0, 0]], datatype=float[8]):
NAG:-f08akc(side, trans, k, a, tau, c, 'm' = m, 'n' = n):
|

|
|