|
Center of Mass for 3D Region in Spherical Coordinates
|
|
|
Description
|
|
Determine , and , the center of mass coordinates for a 3D region in spherical coordinates.
|
Center of Mass for 3D Region in Spherical Coordinates
( is the colatitude, measured down from the -axis)
|
Density:
|
>
|
|
| (1) |
|
Region:
|
|
>
|
|
| (2) |
|
|
>
|
|
| (3) |
|
|
>
|
|
| (4) |
|
|
>
|
|
| (5) |
|
|
>
|
|
| (6) |
|
|
>
|
|
| (7) |
|
Moments ÷ Mass:
Inert Integral -
|
>
|
![Student[MultivariateCalculus][CenterOfMass](rho, rho = 0 .. 1, phi = 0 .. (1/6)*Pi, theta = 0 .. 2*Pi, coordinates = spherical[rho, phi, theta], output = integral)](/support/helpjp/helpview.aspx?si=3999/file05226/math191.png)
|
![](/support/helpjp/helpview.aspx?si=3999/file05226/math194.png)
| (8) |
|
Explicit values for , and , the center of mass given in spherical coordinates:
|
>
|
![Student[MultivariateCalculus][CenterOfMass](rho, rho = 0 .. 1, phi = 0 .. (1/6)*Pi, theta = 0 .. 2*Pi, coordinates = spherical[rho, phi, theta])](/support/helpjp/helpview.aspx?si=3999/file05226/math211.png)
|
| (9) |
|
|
|
|
|
Download Help Document
Was this information helpful?