dsolve/formal_solution - find formal solutions to a homogeneous linear ODE with polynomial coefficients
|
Calling Sequence
|
|
dsolve(ODE, y(x), 'formal_solution', 'coeffs'=coeff_type, 'point'=x0)
dsolve(ODE, y(x), 'type=formal_solution', 'coeffs'=coeff_type, 'point'=x0)
|
|
Parameters
|
|
ODE
|
-
|
homogeneous linear ordinary differential equation with polynomial coefficients
|
y(x)
|
-
|
dependent variable (the indeterminate function)
|
'type=formal_solution'
|
-
|
(optional) request for formal solutions
|
'coeffs'=coeff_type
|
-
|
(optional) coeff_type is one of 'mhypergeom', 'dAlembertian'
|
'point'=x0
|
-
|
algebraic number, rational in parameters, or infinity
|
|
|
|
|
Description
|
|
•
|
When the input ODE is a homogeneous linear ode with polynomial coefficients, and the optional arguments 'formal_solution' (or 'type=formal_solution') and 'coeffs'=coeff_type are given, the dsolve command returns a set of formal solutions with the specified coefficients at the given point (the default is at the origin). For more information, see Slode[mhypergeom_formal_sol] and Slode[dAlembertian_formal_sol].
|
|
|
Examples
|
|
Find the formal solution set with m-hypergeometric series coefficients.
>
|
|
| (1) |
>
|
|
| (2) |
Find the formal solution set with d'Alembertian series coefficient.
>
|
|
| (3) |
>
|
|
| (4) |
>
|
![ode := -(x-1)*y(x)-(2*x^2-4*x-1)*(diff(y(x), x))-(1/2)*x*(x+1)*(x-6)*(diff(y(x), x, x))+(1/2)*(2+x)*x^2*(diff(y(x), x, x, x))](/support/helpjp/helpview.aspx?si=8646/file03744/math156.png)
|
![ode := -(-1+x)*y(x)-(2*x^2-4*x-1)*(diff(y(x), x))-(1/2)*x*(x+1)*(x-6)*(diff(y(x), `$`(x, 2)))+(1/2)*(x+2)*x^2*(diff(y(x), `$`(x, 3)))](/support/helpjp/helpview.aspx?si=8646/file03744/math159.png)
| (5) |
>
|
|
![](/support/helpjp/helpview.aspx?si=8646/file03744/math166.png)
| (6) |
|
|
Download Help Document
Was this information helpful?