>
|

|
Example 1.
First create a vector bundle over M with base coordinates [t, x, y, z] and fiber coordinates [z1, z2, w1, w2].
>
|
|
| (2.1) |
Define a metric g on M. Note that our spinor conventions have the metric with signature [+1, -1, -1, -1].
M >
|
|
| (2.2) |
Define an orthonormal frame on M with respect to the metric g.
M >
|
|
| (2.3) |
Calculate the solder form sigma from the frame F.
M >
|
|
![_DG([["tensor", M, [["cov_bas", "con_vrt", "con_vrt"], []]], [[[1, 5, 7], (1/2)*2^(1/2)], [[1, 6, 8], (1/2)*2^(1/2)], [[2, 5, 8], (1/2)*2^(1/2)], [[2, 6, 7], (1/2)*2^(1/2)], [[3, 5, 8], -((1/2)*I)*2^(1/2)], [[3, 6, 7], ((1/2)*I)*2^(1/2)], [[4, 5, 7], (1/2)*2^(1/2)], [[4, 6, 8], -(1/2)*2^(1/2)]]])](/support/helpjp/helpview.aspx?si=5642/file05852/math160.png)
| (2.4) |
Calculate the bivector solder form S from sigma.
M >
|
|

| (2.5) |
Example 2.
The contraction of two bivector solder forms on their tensor indices can be expressed in terms of the Kronecker delta spinor.
S_{ij}^{AB}*S^{ij}_{CD} = 4*(delta^A_C*delta^B_D + delta^B_C*delta^A_D)
We check this identity using the solder form from Example 1. First we calculate the left-hand side.
M >
|
|

| (2.6) |
M >
|
|

| (2.7) |
M >
|
|
![_DG([["tensor", M, [["con_vrt", "con_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 8], [[5, 6, 5, 6], 4], [[5, 6, 6, 5], 4], [[6, 5, 5, 6], 4], [[6, 5, 6, 5], 4], [[6, 6, 6, 6], 8]]])](/support/helpjp/helpview.aspx?si=5642/file05852/math211.png)
| (2.8) |
To calculate the right-hand side we construct the symmetrized tensor product of 2 Kronecker delta spinors and multiply by 8 (because SymmetrizeIndices will include a factor of 1/2).
M >
|
|
| (2.9) |
M >
|
|
| (2.10) |
M >
|
|
![_DG([["tensor", M, [["con_vrt", "con_vrt", "cov_vrt", "cov_vrt"], []]], [[[5, 5, 5, 5], 8], [[5, 6, 5, 6], 4], [[5, 6, 6, 5], 4], [[6, 5, 5, 6], 4], [[6, 5, 6, 5], 4], [[6, 6, 6, 6], 8]]])](/support/helpjp/helpview.aspx?si=5642/file05852/math239.png)
| (2.11) |
Check that the LHS and RHS are the same.
M >
|
|
| (2.12) |
Example 3.
The contraction of two bivector soldering forms on their tensor indices can be expressed in terms of the metric and the permutation tensor
S_{ij}^{AB}*S_{hk}_{AB} = 2*(g_{ih}*g_{jk} - g_{jh}*g_{ik} - I*epsilon_{ijhk}).
We check this identity using the solder form from Example 1. First we calculate the left-hand side.
M >
|
|

| (2.13) |
M >
|
|

| (2.14) |
To calculate the right-hand side we first construct the tensor product of the metric tensor with itself.
M >
|
|
![_DG([["tensor", M, [["cov_bas", "cov_bas", "cov_bas", "cov_bas"], []]], [[[1, 1, 1, 1], 1], [[1, 1, 2, 2], -1], [[1, 1, 3, 3], -1], [[1, 1, 4, 4], -1], [[2, 2, 1, 1], -1], [[2, 2, 2, 2], 1], [[2, 2, 3, 3], 1], [[2, 2, 4, 4], 1], [[3, 3, 1, 1], -1], [[3, 3, 2, 2], 1], [[3, 3, 3, 3], 1], [[3, 3, 4, 4], 1], [[4, 4, 1, 1], -1], [[4, 4, 2, 2], 1], [[4, 4, 3, 3], 1], [[4, 4, 4, 4], 1]]])](/support/helpjp/helpview.aspx?si=5642/file05852/math298.png)
| (2.15) |
We re-arrange the indices of G to obtain the first two terms on the right-hand side.
M >
|
|
![_DG([["tensor", M, [["cov_bas", "cov_bas", "cov_bas", "cov_bas"], []]], [[[1, 1, 1, 1], 1], [[1, 2, 1, 2], -1], [[1, 3, 1, 3], -1], [[1, 4, 1, 4], -1], [[2, 1, 2, 1], -1], [[2, 2, 2, 2], 1], [[2, 3, 2, 3], 1], [[2, 4, 2, 4], 1], [[3, 1, 3, 1], -1], [[3, 2, 3, 2], 1], [[3, 3, 3, 3], 1], [[3, 4, 3, 4], 1], [[4, 1, 4, 1], -1], [[4, 2, 4, 2], 1], [[4, 3, 4, 3], 1], [[4, 4, 4, 4], 1]]])](/support/helpjp/helpview.aspx?si=5642/file05852/math309.png)
| (2.16) |
M >
|
|
![_DG([["tensor", M, [["cov_bas", "cov_bas", "cov_bas", "cov_bas"], []]], [[[1, 1, 1, 1], 1], [[2, 1, 1, 2], -1], [[3, 1, 1, 3], -1], [[4, 1, 1, 4], -1], [[1, 2, 2, 1], -1], [[2, 2, 2, 2], 1], [[3, 2, 2, 3], 1], [[4, 2, 2, 4], 1], [[1, 3, 3, 1], -1], [[2, 3, 3, 2], 1], [[3, 3, 3, 3], 1], [[4, 3, 3, 4], 1], [[1, 4, 4, 1], -1], [[2, 4, 4, 2], 1], [[3, 4, 4, 3], 1], [[4, 4, 4, 4], 1]]])](/support/helpjp/helpview.aspx?si=5642/file05852/math316.png)
| (2.17) |
We construct the epsilon tensor using the commands MetricDensity and PermutationSymbol.
M >
|
|

| (2.18) |
Evaluate the right-hand side of the identity and check that it agrees with the left-hand side.
M >
|
|

| (2.19) |
M >
|
|
| (2.20) |
Example 4.
The bivector solder form is anti-self-dual, that is,
S_{ij}^{AB} = -I/2*epsilon_{ijhk}*S^{hk}^{AB}
We check this identity using the solder form from Example 1. The left-hand side is just the solder form S1 from Example 1.
M >
|
|

| (2.21) |
To evaluate the right-hand side we begin with the contravariant form of the bivector solder form.
M >
|
|

| (2.22) |
Construct the epsilon tensor and contract with S4 and to obtain the left-hand side.
M >
|
|

| (2.23) |
M >
|
|

| (2.24) |
M >
|
|
| (2.25) |