Student[NumericalAnalysis][InitialValueProblemTutor] - numerically approximate the solution to a first order initial value problem
|
Calling Sequence
|
|
InitialValueProblemTutor(ODE, IC, t=b)
InitialValueProblemTutor(ODE)
InitialValueProblemTutor()
|
|
Parameters
|
|
ODE
|
-
|
equation; first order ordinary differential equation of the form
|
IC
|
-
|
equation; initial condition of the form y(a)=c, where a is the left endpoint of the initial-value problem
|
t
|
-
|
name; the independent variable
|
b
|
-
|
algebraic; the point for which to solve; the right endpoint of this initial-value problem
|
|
|
|
|
Description
|
|
•
|
The InitialValueProblemTutor command launches a tutor interface that computes, plots, and compares numerical approximations to y(b), the exact solution to the given initial-value problem, using various numerical techniques.
|
•
|
If ODE is not specified, InitialValueProblemTutor uses a default ordinary differential equation.
|
•
|
If IC is not specified, InitialValueProblemTutor uses a default initial condition.
|
•
|
If the t = b argument is not specified, InitialValueProblemTutor uses a default endpoint.
|
•
|
Any of the following methods can be used:
|
–
|
Runge-Kutta Order Three
|
–
|
Runge-Kutta Modified Euler
|
–
|
Adams-Bashforth Two-Step
|
–
|
Adams-Bashforth Three-Step
|
–
|
Adams-Bashforth Four-Step
|
–
|
Adams-Bashforth Five-Step
|
–
|
Adams-Moulton Three-Step
|
–
|
Adams-Moulton Four-Step
|
–
|
Adams-Bashforth-Moulton Second-Order Predictor-Corrector
|
–
|
Adams-Bashforth-Moulton Third-Order Predictor-Corrector
|
–
|
Adams-Bashforth-Moulton Fourth-Order Predictor-Corrector
|
–
|
Adams-Bashforth-Moulton Fifth-Order Predictor-Corrector
|
|
|
Download Help Document
Was this information helpful?