RegularChains[ConstructibleSetTools][IsContained] - check whether or not a constructible set is a subset of another one
RegularChains[SemiAlgebraicSetTools][IsContained] - check whether or not a semi-algebraic set is a subset of another one
|
Calling Sequence
|
|
IsContained(cs1, cs2, R)
IsContained(lrsas1, lrsas2, R)
|
|
Parameters
|
|
cs1, cs2
|
-
|
constructible sets
|
lrsas1, lrsas2
|
-
|
lists of regular semi-algebraic systems
|
R
|
-
|
polynomial ring
|
|
|
|
|
Description
|
|
•
|
The command IsContained(cs1, cs2, R) returns true if cs1 is contained in cs2; otherwise false. The polynomial ring may have characteristic zero or a prime characteristic. cs1 and cs2 must be defined over the same ring R.
|
•
|
The command IsContained('lrsas1', 'lrsas2', 'R') returns true if lrsas1 is contained in lrsas2; otherwise false. The polynomial ring must have characteristic zero. lrsas1 and lrsas2 must be defined over the same ring R.
|
•
|
A constructible set is encoded as an constructible_set object, see the type definition in ConstructibleSetTools.
|
•
|
A semi-algebraic set is encoded by a list of regular_semi_algebraic_system, see the type definition in RealTriangularize.
|
•
|
This command is available once RegularChains[ConstructibleSetTools] submodule or RegularChains[SemiAlgebraicSetTools] submodule have been loaded. be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][IsContained] or RegularChains[SemiAlgebraicSetTools][IsContained].
|
|
|
Compatibility
|
|
•
|
The RegularChains[SemiAlgebraicSetTools][IsContained] command was introduced in Maple 16.
|
•
|
The lrsas1 parameter was introduced in Maple 16.
|
|
|
Examples
|
|
>
|
|
>
|
|
First, define the polynomial ring and two polynomials of .
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
Using the GeneralConstruct function and adding one inequality, you can build a constructible set. By and , two constructible sets cs1 and cs2 are different.
>
|
|
| (4) |
>
|
|
| (5) |
Use the IsContained function to check if one is contained in another.
>
|
|
| (6) |
>
|
|
| (7) |
>
|
|
| (8) |
The empty constructible set is contained in any other constructible set.
>
|
|
| (9) |
>
|
|
| (10) |
>
|
|
| (11) |
Semi-algebraic case:
>
|
|
| (12) |
>
|
|
| (13) |
>
|
|
| (14) |
>
|
|
| (15) |
|
|
References
|
|
|
Chen, C.; Golubitsky, O.; Lemaire, F.; Moreno Maza, M.; and Pan, W. "Comprehensive Triangular Decomposition". Proc. CASC 2007, LNCS, Vol. 4770: 73-101. Springer, 2007.
|
|
Chen, C.; Davenport, J.-D.; Moreno Maza, M.; Xia, B.; and Xiao, R. "Computing with semi-algebraic sets represented by triangular decomposition". Proceedings of 2011 International Symposium on Symbolic and Algebraic Computation (ISSAC 2011), ACM Press, pp. 75--82, 2011.
|
|
|