RegularChains[ConstructibleSetTools][ConstructibleSet] - construct a constructible set from a list or set of regular systems
|
Calling Sequence
|
|
ConstructibleSet(lrs, R)
|
|
Parameters
|
|
lrs
|
-
|
list or set of regular systems
|
R
|
-
|
polynomial ring
|
|
|
|
|
Description
|
|
•
|
The command ConstructibleSet(lrs, R) returns a constructible set defined by the list lrs of regular systems.
|
•
|
A point belongs to a constructible set if and only if it is a solution of one of its defining regular systems. That is, a constructible set is the union of the solution sets of its defining regular systems.
|
•
|
Since a regular system always defines a nonempty set, a constructible set is empty if and only if its list of defining regular systems is empty.
|
•
|
This command is part of the RegularChains[ConstructibleSetTools] package, so it can be used in the form ConstructibleSet(..) only after executing the command with(RegularChains[ConstructibleSetTools]). However, it can always be accessed through the long form of the command by using RegularChains[ConstructibleSetTools][ConstructibleSet](..).
|
•
|
See ConstructibleSetTools and RegularChains for the related mathematical concepts, in particular for the ideas of a constructible set, a regular system, and a regular chain.
|
|
|
Examples
|
|
This example demonstrates how to build a constructible set structure.
>
|
|
>
|
|
First, define a polynomial ring.
>
|
|
| (1) |
Consider the following linear polynomial system.
>
|
|
| (2) |
The command Triangularize with lazard option decomposes the solution set by means of regular chains. Each regular chain describes a group of solutions with certain mathematical meaning. See RegularChains for more information.
>
|
|
| (3) |
To build constructible sets, you first need to create regular systems. For simplicity, just let be the inequation part of each regular system.
>
|
|
| (4) |
Then is a list of regular systems by which you can create a constructible set cs.
>
|
|
| (5) |
Use Info to see its internal defining polynomials.
>
|
|
| (6) |
|
|
Download Help Document
Was this information helpful?