OreTools[Properties][GetRingName] - return the name of the Ore algebra
OreTools[Properties][GetVariable] - return the name of the independent variable on which the Ore polynomial ring acts
OreTools[Properties][GetSigma] - return sigma
OreTools[Properties][GetSigmaInverse] - return sigma^(-1)
OreTools[Properties][Getdelta] - return delta
OreTools[Properties][GetTheta1] - return theta(1)
|
Calling Sequence
|
|
GetRingName(A)
GetVariable(A)
GetSigma(A)
GetSigmaInverse(A)
Getdelta(A)
GetTheta1(A)
|
|
Parameters
|
|
A
|
-
|
Ore algebra; to define an Ore algebra, use the SetOreRing function.
|
|
|
|
|
Description
|
|
•
|
The GetRingName(A) calling sequence returns the name of the Ore algebra A.
|
•
|
The GetVariable(A) calling sequence returns the independent variable on which the Ore polynomial ring A acts.
|
•
|
The GetSigma(A) calling sequence returns sigma for the Ore algebra A.
|
•
|
The GetSigmaInverse(A) calling sequence returns sigma^(-1) for the Ore algebra A.
|
•
|
The Getdelta(A) calling sequence returns delta for the Ore algebra A.
|
•
|
The GetTheta1(A) calling sequence returns theta(1) for the Ore algebra A.
|
•
|
For a brief review of pseudo-linear algebra (also known as Ore algebra), see OreAlgebra.
|
|
|
Examples
|
|
>
|
|
>
|
|
Define the shift algebra.
>
|
|
| (1) |
Determine the properties of the algebra.
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
| (5) |
>
|
|
| (6) |
>
|
|
| (7) |
|
|
Download Help Document
Was this information helpful?