|
NAG[g05hlc] NAG[nag_generate_agarchII] - Univariate time series, generate terms of a GARCH process with asymmetry of the form
|
|
Calling Sequence
g05hlc(p, q, theta, gamma_value, ht, et, fcall, rvec, 'num'=num, 'fail'=fail)
nag_generate_agarchII(. . .)
Parameters
|
p - integer;
|
|
|
On entry: the GARCH argument .
|
|
Constraint: . .
|
|
|
q - integer;
|
|
|
On entry: the GARCH argument .
|
|
Constraint: . .
|
|
|
theta - Vector(1.., datatype=float[8]);
|
|
|
|
gamma_value - float;
|
|
|
On entry: the asymmetry argument for the GARCH sequence.
|
|
|
ht - Vector(1..num, datatype=float[8]);
|
|
|
|
et - Vector(1..num, datatype=float[8]);
|
|
|
|
fcall - String;
|
|
|
On entry: if , a new sequence is to be generated, else if a given sequence is to be continued using the information in rvec.
|
|
|
rvec - Vector(1.., datatype=float[8]);
|
|
|
Note: the dimension, dim, of the array rvec must be at least .
|
|
On entry: the array contains information required to continue a sequence if .
|
|
On exit: contains information that can be used in a subsequent call of nag_generate_agarchII (g05hlc), with .
|
|
|
'num'=num - integer; (optional)
|
|
|
Default value: the first dimension of the arrays ht, et.
|
|
On entry: , the number of terms in the sequence.
|
|
;
|
|
.
|
|
|
'fail'=fail - table; (optional)
|
|
|
The NAG error argument, see the documentation for NagError.
|
|
|
|
Description
|
|
|
Purpose
|
|
nag_generate_agarchII (g05hlc) generates a given number of terms of a type II AGARCH process (see Engle and Ng (1993)).
|
|
Error Indicators and Warnings
|
|
"NE_2_INT_ARG_LT"
On entry, while . These arguments must satisfy .
"NE_BAD_PARAM"
On entry, argument fcall had an illegal value.
"NE_INT_ARG_LT"
On entry, p must not be less than 0: .
|
|
|
Examples
|
|
>
|
num := 300:
p := 1:
q := 1:
gamma_value := -0.4:
fcall := "Nag_Garch_Fcall_True":
theta := Vector([0.2, 0.2, 0.7], datatype=float[8]):
ht := Vector(300, datatype=float[8]):
et := Vector(300, datatype=float[8]):
rvec := Vector([0, 0, 0, 0, 0, 0], datatype=float[8]):
NAG:-g05hlc(p, q, theta, gamma_value, ht, et, fcall, rvec, 'num' = num):
# This routine returns a random sequence
|
|
|
See Also
|
|
Bollerslev T (1986) Generalised autoregressive conditional heteroskedasticity Journal of Econometrics 31 307–327
Engle R (1982) Autoregressive conditional heteroskedasticity with estimates of the variance of United Kingdom inflation Econometrica 50 987–1008
Engle R and Ng V (1993) Measuring and Testing the Impact of News on Volatility Journal of Finance 48 1749–1777
Hamilton J (1994) Time Series Analysis Princeton University Press
g05 Chapter Introduction.
NAG Toolbox Overview.
NAG Web Site.
|
|