|
NAG[f08guc] NAG[nag_zupmtr] - Apply unitary transformation matrix determined by f08gsc (nag_zhptrd)
|
|
Calling Sequence
f08guc(side, uplo, trans, ap, tau, c, 'm'=m, 'n'=n, 'fail'=fail)
nag_zupmtr(. . .)
Parameters
|
side - String;
|
|
|
Constraint: "Nag_LeftSide" or "Nag_RightSide". .
|
|
|
uplo - String;
|
|
|
Constraint: "Nag_Upper" or "Nag_Lower". .
|
|
|
trans - String;
|
|
|
Constraint: "Nag_NoTrans" or "Nag_ConjTrans". .
|
|
|
ap - Vector(1..dim, datatype=complex[8]);
|
|
|
Note: the dimension, dim, of the array ap must be at least
|
|
when ;
|
|
when .
|
|
On entry: details of the vectors which define the elementary reflectors, as returned by f08gsc (nag_zhptrd).
|
|
On exit: is used as internal workspace prior to being restored and hence is unchanged.
|
|
|
tau - Vector(1..dim, datatype=complex[8]);
|
|
|
Note: the dimension, dim, of the array tau must be at least
|
|
when ;
|
|
when .
|
|
|
c - Matrix(1..dim1, 1..dim2, datatype=complex[8], order=order);
|
|
|
Note: this array may be supplied in Fortran_order or C_order , as specified by order. All array parameters must use a consistent order.
|
|
|
'm'=m - integer; (optional)
|
|
|
Default value: the first dimension of the array c.
|
|
Constraint: . .
|
|
|
'n'=n - integer; (optional)
|
|
|
Default value: the second dimension of the array c.
|
|
Constraint: . .
|
|
|
'fail'=fail - table; (optional)
|
|
|
The NAG error argument, see the documentation for NagError.
|
|
|
|
Description
|
|
|
Purpose
|
|
nag_zupmtr (f08guc) multiplies an arbitrary complex matrix by the complex unitary matrix which was determined by f08gsc (nag_zhptrd) when reducing a complex Hermitian matrix to tridiagonal form.
|
|
Error Indicators and Warnings
|
|
"NE_ALLOC_FAIL"
Dynamic memory allocation failed.
"NE_BAD_PARAM"
On entry, argument had an illegal value.
"NE_INT"
On entry, . Constraint: .
On entry, . Constraint: .
"NE_INTERNAL_ERROR"
An internal error has occurred in this function. Check the function call and any array sizes. If the call is correct then please consult NAG for assistance.
|
|
Accuracy
|
|
The computed result differs from the exact result by a matrix such that
where is the machine precision.
|
|
Further Comments
|
|
The total number of real floating-point operations is approximately if and if .
The real analogue of this function is f08ggc (nag_dopmtr).
|
|
|
Examples
|
|
>
|
side := "Nag_LeftSide":
uplo := "Nag_Upper":
trans := "Nag_NoTrans":
m := 4:
n := 2:
ap := Vector([-2.28 +0*I, -4.33845594653213 +0*I, 0.3278606760921924 +0.1251226092264437*I, -0.1412565637506947 +0.366636483973957*I, -0.1284569816493291 +0*I, -2.022594578622617 +0*I, -0.308321908008089 -0.1763226364726777*I, -0.1665932537524081 +0*I, -1.802322978338736 +0*I, -1.924949764598262 +0*I], datatype=complex[8], order='C_order'):
tau := Vector([1.410284216766754 -0.4679084045148932*I, 1.302420369434775 -0.785332074252958*I, 1.093973715923082 +0.9955746786231597*I], datatype=complex[8]):
c := Matrix([[0.7298945743917051 +0*I , -0.2595449733877609 +0*I ], [0.6258777805557932 +0*I , -0.04325496258655372 +0*I ], [0.2513449473644085 +0*I , 0.4952474101820682 +0*I ], [0.1111603864444915 +0*I , 0.8279465065502339 +0*I ]], datatype=complex[8], order='C_order'):
NAG:-f08guc(side, uplo, trans, ap, tau, c, 'm' = m, 'n' = n):
|
|
|