|
NAG[f01bnc] NAG[nag_complex_cholesky] - factorization of complex Hermitian positive-definite matrix
|
|
Calling Sequence
f01bnc(a, p, 'n'=n, 'tda'=tda, 'fail'=fail)
nag_complex_cholesky(. . .)
Parameters
|
a - Matrix(1..n, 1..tda, datatype=complex[8], order=C_order);
|
|
|
On exit: the off-diagonal elements of the upper triangular matrix . The lower triangle of is unchanged.
|
|
|
p - Vector(1..n, datatype=float[8]);
|
|
|
On exit: the reciprocals of the real diagonal elements of .
|
|
|
'n'=n - integer; (optional)
|
|
|
Default value: the first dimension of the arrays a, p and the second dimension of the arrays a, pthe array a.
|
|
On entry: , the order of the matrix .
|
|
Constraint: . .
|
|
|
'tda'=tda - integer; (optional)
|
|
|
On entry: the second dimension of the array a as declared in the function from which nag_complex_cholesky (f01bnc) is called.
|
|
Constraint: . .
|
|
|
'fail'=fail - table; (optional)
|
|
|
The NAG error argument, see the documentation for NagError.
|
|
|
|
Description
|
|
|
Purpose
|
|
nag_complex_cholesky (f01bnc) computes a Cholesky factorization of a complex positive-definite Hermitian matrix.
|
|
Description
|
|
nag_complex_cholesky (f01bnc) computes the Cholesky factorization of a complex positive-definite Hermitian matrix , where is a complex upper triangular matrix with real diagonal elements.
|
|
Error Indicators and Warnings
|
|
"NE_DIAG_IMAG_NON_ZERO"
Matrix diagonal element has non-zero imaginary part.
"NE_INT_ARG_LT"
On entry, n must not be less than 1: .
"NE_NOT_POS_DEF"
The matrix is not positive-definite, possibly due to rounding errors.
|
|
Further Comments
|
|
The time taken by nag_complex_cholesky (f01bnc) is approximately proportional to .
|
|
|
Examples
|
|
>
|
n := 4:
tda := 4:
a := Matrix([[15 +0*I , 0 +0*I , 0 +0*I , 0 +0*I ], [1 +2*I , 20 +0*I , 0 +0*I , 0 +0*I ], [2 +0*I , -2 -1*I , 18 +0*I , 0 +0*I ], [-4 -3*I , 3 +3*I , -1 -2*I , 26 +0*I ]], datatype=complex[8], order='C_order'):
p := Vector(4, datatype=float[8]):
NAG:-f01bnc(a, p, 'n' = n, 'tda' = tda):
|
|
|