MTM[fourier] - Fourier integral transform
|
Calling Sequence
|
|
fourier(M)
fourier(M,v)
fourier(M,u, v)
|
|
Parameters
|
|
M
|
-
|
array
|
v
|
-
|
variable
|
u
|
-
|
variable
|
|
|
|
|
Description
|
|
•
|
The fourier(M) function computes the element-wise Fourier transform of M. The result, R, is formed as R[i,j] = fourier(M[i,j], u, v).
|
•
|
fourier(f) is the Fourier transform of the scalar f with default independent variable x. If f is not a function of x, then f is assumed to be a function of the independent variable returned by findsym(f,1). The default return is a function of w.
|
•
|
If f = f(w), then fourier returns a function of t.
|
•
|
By definition, , where the integration above proceeds with respect to x.
|
•
|
fourier(f,v) makes F a function of the variable v instead of the default w.
|
•
|
fourier(f,u,v) makes f a function of u instead of the default. The integration is then with respect to u.
|
|
|
Examples
|
|
>
|
|
>
|
|
| (1) |
>
|
|
| (2) |
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
>
|
|
| (5) |
|
|
Download Help Document
Was this information helpful?