>
|
|
First initialize several different jet spaces over bundles E1 -> M1, E2 -> M2, E3 -> M3. The dimension of the base spaces are dim(M1) = 2, dim(M2) = 1, dim(M3) = 3.
Example 1.
Define a transformation Phi1: E1 -> E2. This transformation is a projectable transformation and therefore pullbacks by the prolongation of Phi1 can be calculated directly using the Pullback command.
E3 >
|
|
| (2.1) |
E1 >
|
|
| (2.2) |
E1 >
|
|
| (2.3) |
Pullback the contact 1-form Cv[1] on J1^(E2) to a contact form on J1^(E1)-- this can be done with either the Pullback command or the ProjectedPullback command.
E1 >
|
|
| (2.4) |
E1 >
|
|
| (2.5) |
Example 2
Define a point transformation Phi2: E1 -> E3 and prolong it to a transformation J^1(E1) -> J^1(E3).
E1 >
|
|
| (2.6) |
E1 >
|
|
| (2.7) |
Calculate the projected pullback of the type (1, 0) form Dp.
E1 >
|
|
| (2.8) |
Calculate the projected pullback of the type (1, 1) form Dp ^ Cv[0].
E1 >
|
|
| (2.9) |
E3 >
|
|
| (2.10) |
To illustrate the definition of the projected pullback we re-derive this result using the usual Pullback command.
First convert omega from a bi-form to a form theta1.
E1 >
|
|
| (2.11) |
Then pullback theta1 using prPhi2.
E3 >
|
|
| (2.12) |
Then convert theta2 back to a bi-form and take the type [1, 1] part.
E1 >
|
|
| (2.13) |
Example 3
Define a differential substitution Phi3: J^2(E2) -> E1 and prolong it to a transformation J^2(E3) -> J^2(E1).
E1 >
|
|
| (2.14) |
E2 >
|
|
| (2.15) |
Calculate the projected pullback of the type (1, 0) form 2*Dx + 3*Dy.
E2 >
|
|
| (2.16) |
Calculate the projected pullback of the type (1, 0) form Cu[0, 0].
E2 >
|
|
| (2.17) |