Finance[BlackScholesRho] - compute the Rho of a European-style option with given payoff
|
Calling Sequence
|
|
BlackScholesRho( , K, T, sigma, r, d, optiontype)
BlackScholesRho( , P, T, sigma, r, d)
|
|
Parameters
|
|
|
-
|
algebraic expression; initial (current) value of the underlying asset
|
K
|
-
|
algebraic expression; strike price
|
T
|
-
|
algebraic expression; time to maturity
|
sigma
|
-
|
algebraic expression; volatility
|
r
|
-
|
algebraic expression; continuously compounded risk-free rate
|
d
|
-
|
algebraic expression; continuously compounded dividend yield
|
P
|
-
|
operator or procedure; payoff function
|
optiontype
|
-
|
call or put; option type
|
|
|
|
|
Description
|
|
•
|
The Rho of an option or a portfolio of options is the sensitivity of the option or portfolio to changes in the risk-free rate
|
•
|
The BlackScholesRho command computes the Rho of a European-style option with the specified payoff function.
|
•
|
The parameter is the initial (current) value of the underlying asset. The parameter T is the time to maturity in years.
|
•
|
The parameter K specifies the strike price if this is a vanilla put or call option. Any payoff function can be specified using the second calling sequence. In this case the parameter P must be given in the form of an operator, which accepts one parameter (spot price at maturity) and returns the corresponding payoff.
|
•
|
The sigma, r, and d parameters are the volatility, the risk-free rate, and the dividend yield of the underlying asset. These parameters can be given in either the algebraic form or the operator form. The parameter d is optional. By default, the dividend yield is taken to be 0.
|
|
|
Compatibility
|
|
•
|
The Finance[BlackScholesRho] command was introduced in Maple 15.
|
|
|
Examples
|
|
>
|
|
First you compute the Rho of a European call option with strike price 100, which matures in 1 year. This will define the Rho as a function of the risk-free rate, the dividend yield, and the volatility.
>
|
|
| (1) |
In this example you will use numeric values for the risk-free rate, the dividend yield, and the volatility.
>
|
|
| (2) |
We can also use the generic method in which the option is defined through its payoff function.
>
|
|
| (3) |
>
|
|
| (4) |
>
|
|
![Rho := 0.1000000000e-9*(0.3871517540e12*exp(-0.1999999999e-17*(2312585093.+500000000.*ln(1/K)+250000000.*sigma^2)^2/sigma^2)+4756147122.*K*sigma+4756147122.*K*sigma*erf(0.5000000000e-9*(6540978404.+1414213562.*ln(1/K)-707106781.*sigma^2)/sigma)-3794856357.*K*exp(-0.2500000000e-18*(6540978404.+1414213562.*ln(1/K)-707106781.*sigma^2)^2/sigma^2))/sigma](/support/helpjp/helpview.aspx?si=8856/file01586/math232.png)
| (5) |
>
|
|
Here are similar examples for the European put option.
>
|
|
![-25*(2*exp(-r)*Pi^(1/2)*sigma+2*exp(-r)*erf((1/4)*(2*ln(2)-2*r+2*d+sigma^2)*2^(1/2)/sigma)*Pi^(1/2)*sigma+2*2^(1/2)*exp(-(1/8)*(4*r*sigma^2+4*ln(2)^2-8*ln(2)*r+8*ln(2)*d+4*ln(2)*sigma^2+4*r^2-8*r*d+4*d^2+4*d*sigma^2+sigma^4)/sigma^2)-exp(-(1/8)*(4*d*sigma^2+4*ln(2)^2-8*ln(2)*r+8*ln(2)*d-4*ln(2)*sigma^2+4*r^2-8*r*d+4*r*sigma^2+4*d^2+sigma^4)/sigma^2)*2^(1/2))/(Pi^(1/2)*sigma)](/support/helpjp/helpview.aspx?si=8856/file01586/math250.png)
| (6) |
>
|
|
| (7) |
>
|
|
![25*exp(-r-d)*(-2*Pi^(1/2)*sigma*erf((1/4)*(2*ln(2)-2*r+2*d+sigma^2)*2^(1/2)/sigma)*exp(d)-2*Pi^(1/2)*sigma*exp(d)-2*2^(1/2)*exp(-(1/8)*(4*ln(2)^2-8*ln(2)*r+8*ln(2)*d+4*ln(2)*sigma^2+4*r^2-8*r*d-4*r*sigma^2+4*d^2-4*d*sigma^2+sigma^4)/sigma^2)+exp(-(1/8)*(-4*r*sigma^2+4*ln(2)^2-8*ln(2)*r+8*ln(2)*d-4*ln(2)*sigma^2+4*r^2-8*r*d+4*d^2-4*d*sigma^2+sigma^4)/sigma^2)*2^(1/2))/(Pi^(1/2)*sigma)](/support/helpjp/helpview.aspx?si=8856/file01586/math264.png)
| (8) |
>
|
|
| (9) |
In this example, you will compute the Rho of a strangle.
>
|
|
![S := 25*exp(-r-d)*(Pi^(1/2)*sigma*erf((1/4)*2^(1/2)*(-sigma^2+2*ln(2)+2*r-2*d)/sigma)*exp(d)+Pi^(1/2)*sigma*exp(d)-2*Pi^(1/2)*sigma*erf((1/4)*(-2*r+2*d+sigma^2)*2^(1/2)/sigma)*exp(d)-exp(-(1/8)*(sigma^4-4*ln(2)*sigma^2-4*r*sigma^2-4*d*sigma^2+4*ln(2)^2+8*ln(2)*r-8*ln(2)*d+4*r^2-8*r*d+4*d^2)/sigma^2)*2^(1/2)+2*2^(1/2)*exp(-(1/8)*(-4*r*sigma^2+4*r^2+8*ln(2)*r-8*r*d+4*ln(2)^2+4*ln(2)*sigma^2-8*ln(2)*d+sigma^4-4*d*sigma^2+4*d^2)/sigma^2))/(Pi^(1/2)*sigma)](/support/helpjp/helpview.aspx?si=8856/file01586/math280.png)
| (10) |
>
|
|
| (11) |
>
|
|
![P := 25*(-exp(-r)*Pi^(1/2)*sigma+exp(-r)*erf((1/4)*2^(1/2)*(-sigma^2+2*ln(2)+2*r-2*d)/sigma)*Pi^(1/2)*sigma-exp(-(1/8)*(4*r*sigma^2+sigma^4-4*ln(2)*sigma^2+4*d*sigma^2+4*ln(2)^2+8*ln(2)*r-8*ln(2)*d+4*r^2-8*r*d+4*d^2)/sigma^2)*2^(1/2)+2*2^(1/2)*exp(-(1/8)*(4*d*sigma^2+4*r^2+8*ln(2)*r+4*r*sigma^2-8*r*d+4*ln(2)^2+4*ln(2)*sigma^2-8*ln(2)*d+sigma^4+4*d^2)/sigma^2))/(Pi^(1/2)*sigma)](/support/helpjp/helpview.aspx?si=8856/file01586/math294.png)
| (12) |
Check:
>
|
|
| (13) |
|
|
References
|
|
|
Hull, J., Options, Futures, and Other Derivatives, 5th. edition. Upper Saddle River, New Jersey: Prentice Hall, 2003.
|
|
|