Center of Mass for 3D Region in Cartesian Coordinates
Description
Determine x&conjugate0;, y&conjugate0;, and z&conjugate0;, the center of mass coordinates for a 3D region in Cartesian coordinates.
Density:
x y z
x⁢y⁢z
Region: z1x,y≤z≤z2x,y,y1x≤y≤y2x,a≤x≤b
z1x,y
1−x− y
1−x−y
z2x,y
10−x2−y2
y1x
x2
y2x
x
a
0
b
1
Moments÷Mass:
Inert Integral - dz dy dx
StudentMultivariateCalculusCenterOfMass,z=.., y=..,x=..,output=integral
∫01∫x2x∫1−x−y10−x2−y2z2⁢x⁢yⅆzⅆyⅆx∫01∫x2x∫1−x−y10−x2−y2x⁢y⁢zⅆzⅆyⅆx,∫01∫x2x∫1−x−y10−x2−y2y2⁢x⁢zⅆzⅆyⅆx∫01∫x2x∫1−x−y10−x2−y2x⁢y⁢zⅆzⅆyⅆx,∫01∫x2x∫1−x−y10−x2−y2x2⁢y⁢zⅆzⅆyⅆx∫01∫x2x∫1−x−y10−x2−y2x⁢y⁢zⅆzⅆyⅆx
Explicit values for x&conjugate0;, y&conjugate0;, and z&conjugate0;
StudentMultivariateCalculusCenterOfMass,z=.., y=..,x=..
3507743573782,332885573782,24943173729583
Commands Used
Student[MultivariateCalculus][CenterOfMass]
Related Task Templates
Multivariate Calculus > Multiple Integration > Cartesian 3-D
See Also
Student[MultivariateCalculus], Student[MultivariateCalculus][MultiInt]
Download Help Document
What kind of issue would you like to report? (Optional)