DifferentialGeometry/Tensor/EnergyMomentumTensor - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : DifferentialGeometry/Tensor/EnergyMomentumTensor

Tensor[EnergyMomentumTensor] - find the energy-momentum tensor for various matter fields

Tensor[MatterFieldEquations] - find the field equations for various matter fields

Tensor[DivergenceIdentities] - check the divergence identities for the energy-momentum tensor field for various matter fields

Calling Sequences

     EnergyMomentumTensor(FieldType, g, F1, F2, ...)

     MatterFieldEquations(FieldType, g, F1, F2, ...)

     DivergenceIdentities(FieldType, g, F1, F2, ... , T, E1, E2,...)

Parameters

   FieldType  - a string, one of "DiracWeyl", "Dust", "Electromagnetic", "PerfectFluid", "Scalar", "NMCScalar"

   g          - a metric tensor

   F1, F2,..  - scalars, tensors or spinors, defining the fields needed for the field theory designated by FieldType

   T          - a rank 2 tensor (the energy-momentum tensor)

   E1, E2,..  - scalars, tensors or spinors, defining the field equations for the field theory designated by FieldType

 

Description

Examples

Description

• 

The energy momentum tensor is a symmetric, rank-2 contravariant tensor T which determines the right-hand side of the Einstein field equations.

• 

If FieldType = "DiracWeyl", then the additional arguments for EnergyMomentumTensor are: a solder form (compatible with the metric g), a rank 1 covariant spinor ψ, and the complex conjugate ψ.

• 

If FieldType = "Dust", then the additional arguments for EnergyMomentumTensor are: a vector field U, a scalar μ (energy density).

• 

If FieldType = "Electromagnetic", then the additional arguments are either: a 1-form A (the electromagnetic 4-potential), or a skew-symmetric rank 2 tensor F (the field strength tensor).

• 

If FieldType = "PerfectFluid", then the additional arguments for EnergyMomentumTensor are: a vector field U, and scalars μ (energy density) and p (pressure).

• 

If FieldType = "Scalar", then the additional argument for EnergyMomentumTensor is a scalar φ.

• 

If FieldType = "NMCScalar", then the additional argument for EnergyMomentumTensor is a non-minimally coupled scalar φ.

• 

See the Details help page for the explicit formulas used to calculate the various energy-momentum tensors, the matter field equations and the divergence identities.

• 

These commands are part of the DifferentialGeometry:-Tensor: package, and so can be used in the form EnergyMomentumTensor(...), MatterFieldEquations(...), DivergenceIdentities(...) only after executing the commands with(DifferentialGeometry); with(Tensor); in that order. They can always be used in the long form DifferentialGeometry:-Tensor:-EnergyMomentumTensor, DifferentialGeometry:-Tensor-MatterFieldEquations, DifferentialGeometry:-Tensor:-DivergenceIdentities.

Examples

withDifferentialGeometry:withTools:withTensor:

 

Example 1. "DiracWeyl"

First create a vector bundle N with base coordinates t,x,y,z and fiber coordinates z1,z2,w1,w2.

DGsetupt,x,y,z,z1,z2,w1,w2,N

frame name: N

(2.1)

 

Define a metric of signature 1,1,1,1 and an orthonormal tetrad.

N > 

g1evalDGx4dt&tdtdx&tdxdy&tdydz&tdz

g1x4dtdtdxdxdydydzdz

(2.2)
N > 

OTetradevalDG1x2D_t,D_x,D_y,D_z

OTetrad1x2D_t,D_x,D_y,D_z

(2.3)

 

Calculate the solder form.

N > 

σ1SolderFormOTetrad

σ1x222dtD_z1D_w1+x222dtD_z2D_w2+22dxD_z1D_w2+22dxD_z2D_w1I22dyD_z1D_w2+I22dyD_z2D_w1+22dzD_z1D_w122dzD_z2D_w2

(2.4)

 

Define a rank 1-spinor field ψ1 and its complex conjugate.

N > 

ψ1evalDGhxdz1fxdz2

ψ1hxdz1fxdz2

(2.5)
N > 

barpsi1evalDGhxdw1fxdw2

barpsi1hxdw1fxdw2

(2.6)

 

Calculate the Dirac-Weyl energy momentum tensor T.

N > 

T1EnergyMomentumTensorDiracWeyl,g1,σ1,ψ1,barpsi1

T12fx2hx2x3D_tD_y+2hxfx+fxhxD_xD_y2fx2hx2x3D_yD_t+2hxfx+fxhxD_yD_x

(2.7)

 

Evaluate the Dirac-Weyl field equations E1 for the given spinor field ψ.

N > 

E1MatterFieldEquationsDiracWeyl,g1,σ1,ψ1,barpsi1

E1I22fxx+fxxD_w1I22hxx+hxxD_w2,I22fxx+fxxD_z1+I22hxx+hxxD_z2

(2.8)

 

Check the divergence identity for the dust energy momentum tensor T. The LHS is the covariant divergence of the energy momentum tensor and the RHS is a combination of the field equations.

N > 

Div1,RHS1DivergenceIdentitiesDiracWeyl,g1,σ1,ψ1,barpsi1,T1,E1

Div1,RHS12xhxfx+xfxhx+2fxhx2hxfxxD_y,2xhxfx+xfxhx+2fxhx2hxfxxD_y

(2.9)
N > 

Div1RHS1

0

(2.10)

 

We note that fx=hx=1x is a solution of the Dirac-Weyl field equations:

N > 

mapDGsimplify,evalE1,fx=1x,hx=1x

0D_z1,0D_z1

(2.11)

 

 The covariant divergence of the energy momentum tensor vanishes on this solution:

N > 

DGsimplifyevalDiv1,fx=1x,hx=1x

0D_t

(2.12)

 

Example 2. "Dust"

First create a manifold M with base coordinates t,x,y,z:

N > 

DGsetupt,x,y,z,M

frame name: M

(2.13)

 

Define a metric.

M > 

g2evalDGdt&tdtt2dx&tdxdy&tdydz&tdz

g2dtdtt2dxdxdydydzdz

(2.14)

 

Define the normalized 4-vector representing the 4-velocity of the dust.

M > 

u2evalDGcoshftD_tsinhfttD_x

u2coshftD_tsinhfttD_x

(2.15)
M > 

TensorInnerProductg2,u2,u2

1

(2.16)

 

Define the energy density.

M > 

μ2ht

μ2ht

(2.17)

 

Calculate the dust energy- momentum tensor T2.

M > 

T2EnergyMomentumTensorDust,g2,u2,μ2

T2htcoshft2D_tD_thtcoshftsinhfttD_tD_xhtcoshftsinhfttD_xD_t+htcoshft21t2D_xD_x

(2.18)

 

Evaluate the dust field equations E2 for the given u2 and μ2.

M > 

E2MatterFieldEquationsDust,g2,u2,μ2

E2htcoshft+h.tcoshftt+htsinhftf.ttt,coshft21+coshftsinhftf.tttD_tcoshftsinhft+coshftf.ttt2D_x

(2.19)

 

Check that the following values for ft and ht solve the dust field equations.

M > 

Solnht=_C21+t2_C1212,ft=arcsinh1t_C1

Solnht=_C21+t2_C12,ft=arcsinh1t_C1

(2.20)
M > 

simplifyevalE2,Soln,symbolic

0,0D_t+0D_x

(2.21)

 

Check the divergence identity for the dust energy-momentum tensor T2. The LHS is the covariant divergence of the energy-momentum tensor and the RHS is a combination of the field equations.

M > 

Div2,RHS2DivergenceIdentitiesDust,g2,u2,μ2,T2,E2

Div2,RHS22htcoshft2ht+h.ttcoshft2+2htcoshftsinhftf.tttD_t2htcoshftsinhft+h.tcoshftsinhftt+2htcoshft2f.tthtf.ttt2D_x,2htcoshft2ht+h.ttcoshft2+2htcoshftsinhftf.tttD_t2htcoshftsinhft+h.tcoshftsinhftt+2htcoshft2f.tthtf.ttt2D_x

(2.22)
M > 

Div2&minusRHS2

0D_t

(2.23)

 

Example 3. "Electromagnetic"

First create a manifold M with base coordinates t,x,y,z.

M > 

DGsetupt,x,y,z,M

frame name: M

(2.24)

 

Define a metric.

M > 

g3evalDGx2dt&tdtdx&tdxdy&tdydz&tdz

g3x2dtdtdxdxdydydzdz

(2.25)

 

Define an electromagnetic 4-potential A3.

M > 

A3evalDGf1xdt+f2xdy

A3f1xdt+f2xdy

(2.26)

 

Calculate the electromagnetic energy-momentum tensor T3.

M > 

T3EnergyMomentumTensorElectromagnetic,g3,A3

T3f2x2x2+f1x22x4D_tD_t+f1xf2xx2D_tD_y+f2x2x2+f1x22x2D_xD_x+f1xf2xx2D_yD_tf2x2x2+f1x22x2D_yD_yf2x2x2+f1x22x2D_zD_z

(2.27)

 

Note that the energy-momentum tensor can also be computed from the field strength tensor F=dA.

M > 

F3ExteriorDerivativeA3

F3f1xdtdx+f2xdxdy

(2.28)
M > 

EnergyMomentumTensorElectromagnetic,g3,F3

f2x2x2+f1x22x4D_tD_t+f1xf2xx2D_tD_y+f2x2x2+f1x22x2D_xD_x+f1xf2xx2D_yD_tf2x2x2+f1x22x2D_yD_yf2x2x2+f1x22x2D_zD_z

(2.29)

 

Evaluate the electromagnetic field equations E3 for the given 4-potential A.

M > 

E3MatterFieldEquationsElectromagnetic,g3,A3

E3f1xf1xxx3D_tf2xx+f2xxD_y,0dtdxdy

(2.30)

 

Note that the electromagnetic field equations E3 can also be computed from the field strength tensor F=dA.

M > 

MatterFieldEquationsElectromagnetic,g3,F3

f1xf1xxx3D_tf2xx+f2xxD_y,0dtdxdy

(2.31)

 

Check the divergence identity for the electromagnetic energy-momentum tensor T3. The LHS is the covariant divergence of the energy momentum tensor and the RHS is a combination of the matter field equations.

M > 

Div3,RHS3DivergenceIdentitiesElectromagnetic,g3,A3,T3,E31

Div3,RHS3f2xx3f2xxf1xf1x+f1x2+f2x2x2x3D_x,f2xx3f2xxf1xf1x+f1x2+f2x2x2x3D_x

(2.32)
M > 

Div3&minusRHS3

0D_t

(2.33)

We note that f1x=x2, f2x=lnx is a solution of the electromagnetic field equations:

M > 

DGsimplifyevalE3,f1x=x2,f2x=lnx

0D_t

(2.34)

 

The covariant divergence of the energy-momentum tensor vanishes on this solution:

M > 

DGsimplifyevalDiv3,f1x=x2,f2x=lnx

0D_t

(2.35)

 

Example 4. "PerfectFluid"

First create a manifold M with base coordinates t,x,y,z:

M > 

DGsetupt,x,y,z,M

frame name: M

(2.36)

 

Define a metric.

M > 

g4evalDGdt&tdtt2dx&tdxdy&tdydz&tdz

g4dtdtt2dxdxdydydzdz

(2.37)

 

Define the normalized 4-velocity.

M > 

u4evalDG2D_t+sqrt3tD_x

u42D_t+3tD_x

(2.38)
M > 

TensorInnerProductg4,u4,u4

1

(2.39)

 

Define the energy density.

M > 

μ4kt

μ4kt

(2.40)

 

Define the pressure.

M > 

p4ht

p4ht

(2.41)

 

Calculate the perfect fluid energy-momentum tensor T4.

M > 

T4EnergyMomentumTensorPerfectFluid,g4,u4,μ4,p4

T45ht+4ktD_tD_t+2kt+ht3tD_tD_x+2kt+ht3tD_xD_t+2ht+3ktt2D_xD_xhtD_yD_yhtD_zD_z

(2.42)

 

Evaluate the fluid field equations E4 for the given fluid.

M > 

E4MatterFieldEquationsPerfectFluid,g4,u4,μ4,p4

E47kt+7ht+5h.tt+4tk.ttD_t+232kt+2ht+tk.t+h.ttt2D_x

(2.43)

 

We can use the dsolve command to find the energy density kt and the pressure ht which satisfy the field equations.

M > 

deDGinfoE4,CoefficientSet

de7kt+7ht+5h.tt+4tk.tt,232kt+2ht+tk.t+h.ttt2

(2.44)
M > 

dsolvede

ht=_C1+_C2t2,kt=_C13_C2t2

(2.45)

 

Example 5. "Scalar"

First create a manifold M with base coordinates t,x,y,z.

M > 

DGsetupt,x,y,z,M

frame name: M

(2.46)

 

Define a metric.

M > 

g5evalDGdt&tdtt2dx&tdxdy&tdydz&tdz

g5dtdtt2dxdxdydydzdz

(2.47)

 

Define a scalar field.

M > 

φ5ft

φ5ft

(2.48)

 

Calculate the energy- momentum tensor T5 for the scalar field φ5.

M > 

T5EnergyMomentumTensorScalar,g5,φ5

T5f.t22+_m2ft22D_tD_t+f.t2+_m2ft22t2D_xD_x+f.t22+_m2ft22D_yD_y+f.t22+_m2ft22D_zD_z

(2.49)

 

Evaluate the matter field equations E5 for the given scalar field φ5.

M > 

E5MatterFieldEquationsScalar,g5,φ5

E5f.t+f..ttt_m2ft

(2.50)

 

Check the divergence identity for the scalar energy-momentum tensor T5. The LHS is the covariant divergence of the energy-momentum tensor and the RHS is a combination of the matter field equations.

M > 

Div5,RHS5DivergenceIdentitiesScalar,g5,φ5,T5,E5

Div5,RHS5f.tf.t+f..ttt_m2fttD_t,f.tf.t+f..ttt_m2fttD_t

(2.51)
M > 

Div5&minusRHS5

0D_t

(2.52)

 

Example 6.  "NMCScalar"

First create a manifold M with base coordinates t,x,y,z.

M > 

DGsetupt,x,y,z,M

frame name: M

(2.53)

 

Define a metric.

M > 

g6evalDGdt&tdtt2dx&tdxdy&tdydz&tdz

g6dtdtt2dxdxdydydzdz

(2.54)

 

Define a scalar field

M > 

φ6ft

φ6ft

(2.55)

 

Calculate the energy-momentum tensor T6 for the non-minimally coupled scalar field φ6.

M > 

T6EnergyMomentumTensorNMCScalar,g6,φ6

T6_m2ft2t+4_ξftf.t+f.t2t2tD_tD_t_m2ft2+4_ξftf..t+4f.t2_ξf.t22t2D_xD_x_m2ft2t+4_ξftf.t+4_ξftf..tt+4f.t2t_ξf.t2t2tD_yD_y_m2ft2t+4_ξftf.t+4_ξftf..tt+4f.t2t_ξf.t2t2tD_zD_z

(2.56)

 

Evaluate the matter field equations E6 for the given scalar field φ6.

M > 

E6MatterFieldEquationsNMCScalar,g6,φ6

E6f.t+f..ttt_m2ft

(2.57)

 

Check the divergence identity for the scalar energy-momentum tensor T6. The LHS is the covariant divergence of the energy-momentum tensor and the RHS is a combination of the matter field equations.

M > 

Div6,RHS6DivergenceIdentitiesScalar,g6,φ6,T6,E6

Div6,RHS6f.tf.t+f..ttt_m2fttD_t,f.tf.t+f..ttt_m2fttD_t

(2.58)

 

M > 

Div6&minusRHS6

0D_t

(2.59)

See Also

DifferentialGeometry

Tensor