 tensor(deprecated)/simp - Maple Help

The tensor Package Simplification Routines Description

Important: The tensor package has been deprecated. Use the superseding packages DifferentialGeometry and Physics instead.

 • When doing computations involving tensor components, the size of a computation can grow quite rapidly due to the sheer number of quantities involved.  Also, the amount and type of simplification depends on the particular computation and the metric of the geometry involved. Thus, it is necessary for simplification of quantities to be carried out with the computation of each new component or quantity.  This is why each computation routine of the package uses its own simplification routine (where appropriate).  By redefining the simplification routines for particular routines of the package, you can customize the way simplification is done at each step of computation.
 • For the most part, these simplification routines are named after the routine that they are used by. The name tensor/xxxx/simp would be used for the simplifier used by the xxxx routine of the package.  However, because some of the operations are similar and because some operations call others, some of the simplification routines are shared by more than one routine of the package.  For reference, here is a table of the simplifying routines used by each procedure of the package:

 Package Routine     |       Simplifier ------------------------------------------------------ | Christoffel1        |   tensor/Christoffel1/simp Christoffel2        |   tensor/Christoffel2/simp Einstein            |   tensor/Einstein/simp Jacobian            |   tensor/partial_diff/simp Killing_eqns        |   tensor/lin_com/simp, |   tensor/cov_diff/simp Levi_Civita         |           ---- Lie_diff            |   tensor/Lie_diff/simp, |   tensor/partial_diff/simp Ricci               |   tensor/Ricci/simp Ricciscalar         |   tensor/Ricciscalar/simp Riemann             |   tensor/Riemann/simp RiemannF            |   tensor/RiemannF/simp * Weyl                |   tensor/Weyl/simp act                 |           ---- antisymmetrize      |   tensor/lin_com/simp change_basis        |   tensor/raise/simp commutator          |   tensor/commutator/simp, |   tensor/partial_diff/simp compare             |   tensor/compare/simp connexF             |   tensor/connexF/simp  * contract            |   tensor/prod/simp convertNP           |   tensor/lin_com/simp cov_diff            |   tensor/cov_diff/simp create              |           ---- d1metric            |   tensor/d1metric/simp d2metric            |   tensor/d2metric/simp directional_diff    |   tensor/dir_diff/simp display_allGR       |           ---- displayGR           |           ---- dual                |   tensor/prod/simp exterior_diff       |   tensor/lin_com/simp, |   tensor/partial_diff/simp exterior_prod       |   tensor/lin_com/simp, |   tensor/prod/simp frame               |   tensor/lin_com/simp geodesic_eqns       |           ---- get_char            |           ---- get_compts          |           ---- invars              |   tensor/invars/simp |   tensor/invars/Msimp  * invert              |   tensor/invert/simp lin_com             |   tensor/lin_com/simp lower               |   tensor/raise/simp npcurve             |   tensor/npcurve/simp npspin              |   tensor/npspin/simp, |   tensor/npspin/spincoeff/simp * partial_diff        |   tensor/partial_diff/simp permute_indices     |           ---- petrov              |   tensor/petrov/simp prod                |   tensor/prod/simp raise               |   tensor/raise/simp entermetric         |           ---- symmetrize          |   tensor/lin_com/simp tensorsGR           |           ---- transform           |   tensor/raise/simp

 • The simplification routines must take a single algebraic argument and return something (presumably a simpler version of the argument) of an algebraic type.
 • To facilitate the initialization of all of these routines (except for the ones identified by an asterisk), they are all initialized to tensor/simp, which is itself initialized to:

 tensor/simp := proc(a) normal(a) end proc:

 If you find that you want to change the method of simplification done by each routine, but that most or all of the routines require the same method, you can cut down on the number of changes that need to be made by simply changing tensor/simp to suit the needs of most of the simplifiers, and then make any further changes for the few specific routines. Note that such automatic initialization is done only after either having defined all of the tensor functions using the command with(tensor), or having explicitly performed the initialization using the command with(tensor,name), where name is either one of the tensor package procedures or an empty list).
 • Once you have  customized the simplification routines for a particular problem, they can be written to a file (see ?save) so that they are easily retrievable in subsequent sessions.
 • For more information on the simplifier used by a particular routine, refer to the "Simplification" section of the help for that particular routine. Examples

Important: The tensor package has been deprecated. Use the superseding packages DifferentialGeometry and Physics instead.

 > $\mathrm{with}\left(\mathrm{tensor}\right):$
 > $\mathrm{interface}\left(\mathrm{verboseproc}=2\right):$

To what are the simplifiers initialized?

 > $\mathrm{eval}\left(\mathrm{tensor/simp}\right)$
 ${\mathbf{proc}}\left({a}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{...}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (1)
 > $\mathrm{eval}\left(\mathrm{tensor/cov_diff/simp}\right)$
 ${\mathbf{proc}}\left({a}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{...}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (2)
 > $\mathrm{eval}\left(\mathrm{tensor/Ricci/simp}\right)$
 ${\mathbf{proc}}\left({a}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{...}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (3)
 > $\mathrm{eval}\left(\mathrm{tensor/Riemann/simp}\right)$
 ${\mathbf{proc}}\left({a}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{...}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (4)

Now suppose that you want to change all of the simplifiers so that they use the Maple simplify function instead of normal.  You can accomplish this easily:

 > tensor/simp:=proc(x) simplify(x) end proc;
 ${\mathrm{tensor/simp}}{≔}{\mathbf{proc}}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{simplify}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (5)

Notice that this single change affects all of the simplifiers.

 > $\mathrm{eval}\left(\mathrm{tensor/cov_diff/simp}\right)$
 ${\mathbf{proc}}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{simplify}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (6)
 > $\mathrm{eval}\left(\mathrm{tensor/Ricci/simp}\right)$
 ${\mathbf{proc}}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{simplify}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (7)
 > $\mathrm{eval}\left(\mathrm{tensor/Riemann/simp}\right)$
 ${\mathbf{proc}}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{simplify}}{}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (8)

Now suppose that for the Riemann procedure, you want to simplify each component, make the substitution cos(theta)^2 = 1 - sin(theta)^2, and then factor the result. You can do this by re-defining the tensor/Riemann/simp procedure:

 > tensor/Riemann/simp:=proc(x)  local y;     y:= simplify(x);     y:= subs(cos(theta)^2 = 1 - sin(theta)^2, y);     factor(y);  end proc;
 ${\mathrm{tensor/Riemann/simp}}{≔}{\mathbf{proc}}\left({x}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{local}}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{y}{;}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{y}{≔}{\mathrm{simplify}}{}\left({x}\right){;}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{y}{≔}{\mathrm{subs}}{}\left({\mathrm{cos}}{}\left({\mathrm{θ}}\right){^}{2}{=}{1}{-}{\mathrm{sin}}{}\left({\mathrm{θ}}\right){^}{2}{,}{y}\right){;}\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathrm{factor}}{}\left({y}\right)\phantom{\rule[-0.0ex]{0.5em}{0.0ex}}{\mathbf{end proc}}$ (9)