ln - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.

ln

The Natural Logarithm

log

The General Logarithm

log10

The Common Logarithm

log2

The Binary Logarithm

Calling Sequence

 ln(x) log(x) log10(x) log2(x) log[b](x) ${\mathrm{log}}_{b}\left(x\right)$ log(x, b)

Parameters

 x - expression b - base

Description

 • The natural logarithm, ln, is the logarithm with base $ⅇ=2.71828$...  For $0 we have $\mathrm{ln}\left(x\right)=y$ <==> $x={ⅇ}^{y}$.
 • For complex-valued expressions x, $\mathrm{ln}\left(x\right)=\mathrm{ln}\left(\left|x\right|\right)+I\mathrm{arg}\left(x\right)$, where $-\mathrm{\pi }$
 • The log function is the general logarithm.  For $0 and $0 we have ${\mathrm{log}}_{b}\left(x\right)=y$<==>$x={b}^{y}$.  log is extended to general complex b and x by ${\mathrm{log}}_{b}\left(x\right)=\frac{\mathrm{ln}\left(x\right)}{\mathrm{ln}\left(b\right)}$.
 • The default value of the base b is $ⅇ$.
 • You can enter the function log with base b using either the 1-D or 2-D calling sequence.  The base can be entered as an index or as the second argument.  Similarly, $e$ can also be entered as exp(1) in 1-D.  See exp for more about the exponential function.
 • $\mathrm{log10}\left(x\right)={\mathrm{log}}_{10}\left(x\right)$.
 • $\mathrm{log2}\left(x\right)={\mathrm{log}}_{2}\left(x\right)$.
 • $\mathrm{ln}\left(x\right)={\mathrm{log}}_{ⅇ}\left(x\right)$.

Examples

 > $\mathrm{ln}\left(1\right)$
 ${0}$ (1)
 > $\frac{ⅆ}{ⅆx}\mathrm{ln}\left(x\right)$
 $\frac{{1}}{{x}}$ (2)
 > $\mathrm{ln}\left(3.14+2.71I\right)$
 ${1.422562238}{+}{0.7120258406}{}{I}$ (3)
 > $\mathrm{ln}\left(3+4I\right)$
 ${\mathrm{ln}}{}\left({3}{+}{4}{}{I}\right)$ (4)
 > $\mathrm{evalc}\left(\right)$
 ${\mathrm{ln}}{}\left({5}\right){+}{I}{}{\mathrm{arctan}}{}\left(\frac{{4}}{{3}}\right)$ (5)
 > $\mathrm{ln}\left(10000\right)$
 ${4}{}{\mathrm{ln}}{}\left({10}\right)$ (6)

The default value of the base b is $ⅇ$.

 > $\mathrm{log}\left(10000\right)$
 ${4}{}{\mathrm{ln}}{}\left({10}\right)$ (7)
 > $\mathrm{log}\left({ⅇ}^{3}\right)$
 ${3}$ (8)
 > $\mathrm{log10}\left(10000\right)$
 ${4}$ (9)
 > ${\mathrm{log}}_{10}\left(100\right)$
 ${2}$ (10)
 > $\mathrm{log}\left(16,8\right)$
 $\frac{{4}}{{3}}$ (11)
 > ${\mathrm{log}}_{ⅇ}\left(x\right)$
 ${\mathrm{ln}}{}\left({x}\right)$ (12)
 > ${\mathrm{log}}_{b}\left(x\right)$
 $\frac{{\mathrm{ln}}{}\left({x}\right)}{{\mathrm{ln}}{}\left({b}\right)}$ (13)
 > $\mathrm{log10}\left(65\right)$
 $\frac{{\mathrm{ln}}{}\left({65}\right)}{{\mathrm{ln}}{}\left({10}\right)}$ (14)
 > $\mathrm{log2}\left(ⅇ\right)$
 $\frac{{1}}{{\mathrm{ln}}{}\left({2}\right)}$ (15)
 > $\mathrm{evalf}\left(\right)$
 ${1.442695041}$ (16)
 > ${\mathrm{log}}_{5}\left(5x\right)-{\mathrm{log}}_{5}\left(x\right)$
 $\frac{{\mathrm{ln}}{}\left({5}{}{x}\right)}{{\mathrm{ln}}{}\left({5}\right)}{-}\frac{{\mathrm{ln}}{}\left({x}\right)}{{\mathrm{ln}}{}\left({5}\right)}$ (17)
 > $\mathrm{simplify}\left(\right)$
 ${1}$ (18)
 > $\mathrm{solve}\left({\mathrm{log}}_{6}\left(2y\right)=2,y\right)$
 ${18}$ (19)
 > $\mathrm{convert}\left(\mathrm{arcsin}\left(x\right),\mathrm{ln}\right)$
 ${-I}{}{\mathrm{ln}}{}\left({I}{}{x}{+}\sqrt{{-}{{x}}^{{2}}{+}{1}}\right)$ (20)

Compatibility

 • The log2 command was introduced in Maple 2021.
 • For more information on Maple 2021 changes, see Updates in Maple 2021.