LowerBound - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


SumTools[Hypergeometric]

  

LowerBound

  

compute a lower bound for the order of the telescopers for a hypergeometric term

 

Calling Sequence

Parameters

Description

Examples

References

Calling Sequence

LowerBound(T, n, k, En, 'Zpair')

Parameters

T

-

hypergeometric term in n and k

n

-

name

k

-

name

En

-

(optional) name denoting the shift operator with respect to n

'Zpair'

-

(optional) name

Description

• 

Let T be a hypergeometric term in n and k. The function LowerBound(T, n, k) computes a lower bound for the order of the telescopers for T if it is guaranteed that Zeilberger's algorithm is applicable to T.

• 

If the fourth and the fifth optional arguments (each of which can be any name), En and 'Zpair' respectively, are specified, the minimal telescoper for T is computed and assigned to the fifth argument 'Zpair' using the computed lower bound  as the starting value of the guessed orders.

Examples

withSumToolsHypergeometric:

T1nk+1+1binomial2n,k+11nk+1binomial2n,k+12k1n3k+1binomial2n,k

T2nk+1nk+1+12nkkn+1+2nk2k1n3k+1

(1)

LowerBoundT,n,k

3

(2)

Zeilberger's algorithm is not applicable to the following hypergeometric term so LowerBound returns an error.

T1nk+1binomial2n,2k

T2n2kkn+1

(3)

LowerBoundT,n,k

Error, (in SumTools:-Hypergeometric:-LowerBound) Zeilberger's algorithm is not applicable

T1nk+11n3k52n+k+4!1nk1n3k22n+k+3!+1n3k22n+k+3!

T1nk+11n3k52n+k+4!1kn1n3k22n+k+3!+1n3k22n+k+3!

(4)

LowerBoundT,n,k,En,Zpair

3

(5)

LZpair1

L96889010407n134013973288290n1276107306338070n11874305244269093n106788048750132832n937604322096371100n8152885294205849709n7461743890026242439n61035633823402072251n51703061496353656040n41995094474254403011n31575944956962320238n2751943328788699320n163575961093126400En4+96889010407n13+3917084277883n12+72536254240212n11+814487155639857n10+6186007839562887n9+33550538764167390n8+133652029105976437n7+395832377416110838n6+871303942188476181n5+1407347883183343752n4+1620685980982353516n3+1259506839996666240n2+591742636413140800n+126860211237760000En3+257298363n6+3969746172n5+25015702068n4+82342227429n3+149184720027n2+140923968318n+54171659763En257298363n65513536350n548723908373n4227248464681n3589862551887n2807775419969n455865322140

(6)

The computed lower bound is 3, while the order of the minimal telescoper is

degreeL,En

4

(7)

References

  

Abramov, S.A. and Le, H.Q. "A Lower Bound for the Order of Telescopers for a Hypergeometric Term." CD-ROM. Proceedings FPSAC 2002. (2002).

See Also

SumTools[Hypergeometric]

SumTools[Hypergeometric][IsZApplicable]

SumTools[Hypergeometric][MinimalZpair]

SumTools[Hypergeometric][Zeilberger]

SumTools[Hypergeometric][ZpairDirect]