 FixedPointIteration - Maple Help

Student[NumericalAnalysis]

 FixedPointIteration
 numerically approximate the real roots of an expression using the fixed point iteration method Calling Sequence FixedPointIteration(f, x=a, opts) FixedPointIteration(f, a, opts) Parameters

 f - algebraic; expression in the variable x representing a continuous function x - name; the independent variable of f a - numeric; the initial approximate root opts - (optional) equation(s) of the form keyword=value, where keyword is one of fixedpointiterator, functionoptions, lineoptions, maxiterations, output, pointoptions, showfunction, showlines, showpoints, stoppingcriterion, tickmarks, caption, tolerance, verticallineoptions, view; the options for approximating the roots of f Options

 • fixedpointiterator = algebraic (optional)
 The expression on the right-hand side will be used to generate the fixed-point iteration sequence. If this option is specified, the first argument, f, must be omitted. See the Notes section for more details.
 • functionoptions = list
 A list of options for the plot of the expression f. By default, f is plotted as a solid red line.
 • lineoptions = list
 A list of options for the lines on the plot. By default the lines are dotted blue.
 • maxiterations = posint
 The maximum number of iterations to perform. The default value of maxiterations depends on which type of output is chosen:
 – output = value: default maxiterations = 100
 – output = sequence: default maxiterations = 10
 – output = information: default maxiterations = 10
 – output = plot: default maxiterations = 5
 – output = animation: default maxiterations = 10
 • output = value, sequence, plot, animation, or information
 The return value of the function. The default is value.
 – output = value returns the final numerical approximation of the root.
 – output = sequence returns an expression sequence ${p}_{k}$, $k$=$0..n$ that converges to the exact root for a sufficiently well-behaved function and initial approximation.
 – output = plot returns a plot of f with each iterative approximation shown and the relevant information about the numerical approximation displayed in the caption of the plot.
 – output = animation returns an animation showing the iterations of the root approximation process.
 – output = information returns detailed information about the iterative approximations of the root of f.
 • plotoptions = list
 The final plot options when output = plot or output = animation.
 • pointoptions = list
 A list of options for the points on the plot. By default, the points are plotted as green circles.
 • showfunction = truefalse
 Whether to display f on the plot or not.  By default, this option is set to true.
 • showlines = truefalse
 Whether to display lines that accentuate each approximate iteration when output = plot. By default, this option is set to true.
 • showpoints = truefalse
 Whether to display the points at each approximate iteration on the plot when output = plot. By default, this option is set to true.
 • stoppingcriterion = relative, absolute, or function_value
 The criterion that the approximations must meet before discontinuing the iterations. The following describes each criterion:
 – relative : $\frac{\left|{p}_{n}-{p}_{n-1}\right|}{\left|{p}_{n}\right|}$ < tolerance
 – absolute : $\left|{p}_{n}-{p}_{n-1}\right|$ < tolerance
 – function_value : $\left|f\left({p}_{n}\right)\right|$ < tolerance
 By default, stoppingcriterion = relative.
 • tickmarks = list
 The tickmarks when output = plot or output = animation. By default, tickmarks are placed at the initial and final approximations with the labels ${p}_{0}$ (or a and b for two initial approximates) and ${p}_{n}$, where $n$ is the total number of iterations used to reach the final approximation. See plot/tickmarks for more detail on specifying tickmarks.
 • caption = string
 A caption for the plot. The default caption contains general information concerning the approximation. For more information about specifying a caption, see plot/typesetting.
 • tolerance = positive
 The error tolerance of the approximation. The default value is $\frac{1}{10000}$.
 • verticallineoptions = list
 A list of options for the vertical lines on the plot. By default, the lines are dashed and blue.
 • view = [realcons..realcons, realcons..realcons]
 The plotview of the plot when output = plot.  See plot/options for more information. Description

 • The FixedPointIteration command numerically approximates the roots of an algebraic function, f by converting the problem to a fixed-point problem.
 • Given an expression f and an initial approximate a, the FixedPointIteration command computes a sequence ${p}_{k}$, $k$=$0..n$, of approximations to a root of f, where $n$ is the number of iterations taken to reach a stopping criterion.
 • The first argument f may be substituted with an option of the form fixedpointiterator = fpexpr. See Notes.
 • The FixedPointIteration command is a shortcut for calling the Roots command with the method=fixedpointiteration option. Notes

 • This procedure first converts the problem of finding a root to the equation $f\left(x\right)=0$ to a problem of finding a fixed point for the function $g\left(x\right)$, where $g\left(x\right)=x-f\left(x\right)$ and $f\left(x\right)$ is specified by f and x.
 • The user can specify a custom iterator function $g\left(x\right)$ by omitting the first argument f and supplying the fixedpointiterator = g option. The right-hand side expression g specifies a function $g\left(x\right)$, and this procedure will aim to find a root to $f\left(x\right)$ = $x-g\left(x\right)=0$ by way of solving the fixed-point problem $g\left(x\right)=x$.
 When output = plot or output = animation is specified, both the function $f\left(x\right)$ and the fixed-point iterator function $g\left(x\right)$ will be plotted and correspondingly labelled.
 The tolerance option, when stoppingcriterion = function_value, applies to the function $f\left(x\right)$ in the root-finding form of the problem. Examples

 > $\mathrm{with}\left({\mathrm{Student}}_{\mathrm{NumericalAnalysis}}\right):$
 > $f≔x-\mathrm{cos}\left(x\right):$
 > $\mathrm{FixedPointIteration}\left(f,x=1.0,\mathrm{tolerance}={10}^{-2}\right)$
 ${0.7414250866}$ (1)
 > $\mathrm{FixedPointIteration}\left(f,x=1.0,\mathrm{tolerance}={10}^{-2},\mathrm{output}=\mathrm{sequence},\mathrm{maxiterations}=20\right)$
 ${1.0}{,}{0.5403023059}{,}{0.8575532158}{,}{0.6542897905}{,}{0.7934803587}{,}{0.7013687737}{,}{0.7639596829}{,}{0.7221024250}{,}{0.7504177618}{,}{0.7314040424}{,}{0.7442373549}{,}{0.7356047404}{,}{0.7414250866}$ (2)
 > $\mathrm{FixedPointIteration}\left(f,x=1.0,\mathrm{tolerance}={10}^{-2},\mathrm{output}=\mathrm{plot},\mathrm{stoppingcriterion}=\mathrm{function_value},\mathrm{maxiterations}=20\right)$ > $\mathrm{FixedPointIteration}\left(f,x=1.0,\mathrm{tolerance}={10}^{-3},\mathrm{output}=\mathrm{animation},\mathrm{stoppingcriterion}=\mathrm{absolute},\mathrm{maxiterations}=20\right)$ To find a root of $f\left(x\right)={x}^{2}-2x-3$ using the fixed-point iterator function $g\left(x\right)=\sqrt{2x+3}$, use the fixedpointiterator = g option.

 > $g≔{\left(2x+3\right)}^{\frac{1}{2}}:$
 > $\mathrm{FixedPointIteration}\left(\mathrm{fixedpointiterator}=g,x=4.0,\mathrm{tolerance}={10}^{-2}\right)$
 ${3.011440019}$ (3)
 > $\mathrm{FixedPointIteration}\left(\mathrm{fixedpointiterator}=g,x=4.0,\mathrm{tolerance}={10}^{-2},\mathrm{output}=\mathrm{sequence}\right)$
 ${4.0}{,}{3.316624790}{,}{3.103747667}{,}{3.034385495}{,}{3.011440019}$ (4)
 > $\mathrm{FixedPointIteration}\left(\mathrm{fixedpointiterator}=g,x=4.0,\mathrm{output}=\mathrm{plot},\mathrm{stoppingcriterion}=\mathrm{function_value},\mathrm{maxiterations}=10\right)$ > $\mathrm{FixedPointIteration}\left(\mathrm{fixedpointiterator}=g,x=4.0,\mathrm{output}=\mathrm{animation},\mathrm{stoppingcriterion}=\mathrm{absolute}\right)$ 