>

$\mathrm{with}\left(\mathrm{Statistics}\right)\:$

Compute the probability of the normal distribution.
>

$X\u2254\mathrm{RandomVariable}\left(\mathrm{Normal}\left(0\,1\right)\right)\:$

>

$\mathrm{Probability}\left({X}^{2}<1\right)$

${\mathrm{erf}}{}\left(\frac{\sqrt{{2}}}{{2}}\right)$
 (1) 
>

$\mathrm{Probability}\left({X}^{2}<1\,'\mathrm{numeric}'\right)$

${0.682689492137086}$
 (2) 
Compute the probability that the product of 3 independent random variables uniformly distributed on between 0 and 1 is less than t.
>

$X\u2254\left[\mathrm{seq}\left(\mathrm{RandomVariable}\left(\mathrm{Uniform}\left(0\,1\right)\right)\,i=1..4\right)\right]\:$

>

$Y\u2254X\left[1\right]X\left[2\right]X\left[3\right]\:$

>

$\mathrm{Probability}\left(Y<t\right)$

$\left\{\begin{array}{cc}{0}& {t}{\le}{0}\\ \frac{{{\mathrm{ln}}{}\left({t}\right)}^{{2}}{}{t}}{{2}}{}{t}{}{\mathrm{ln}}{}\left({t}\right){+}{t}& {t}{\le}{1}\\ {1}& {1}{<}{t}\end{array}\right.$
 (3) 
Compute the probability that the distance between two points randomly chosen from a 1x1 square is less than 1.
>

$Z\u2254{\left({\left(X\left[1\right]X\left[3\right]\right)}^{2}+{\left(X\left[2\right]X\left[4\right]\right)}^{2}\right)}^{\frac{1}{2}}\:$

>

$\mathrm{Probability}\left(Z<\frac{1}{2}\right)$

${}\frac{{29}}{{96}}{+}\frac{{\mathrm{\pi}}}{{4}}$
 (4) 