Fluid Properties Check - MapleSim Help

Fluid Properties Check

Accessory component to check Fluid properties

 Description The Fluid Properties Check component models Air fluid properties calculation. Before using HeatConvection component and components in Air and Water subpackage, you can check how to calculate fluid properties which are used for the component internally. And, if you'd like to define your own definition for the heat transfer coefficient calculation, this component is helpful to get the fluid properties.

Equations

Average temperature is :

$T=\frac{\mathrm{Tin}\left[1\right]-\mathrm{Tin}\left[2\right]}{2}$

 Type of Media = Actual Air (CoolProp) Density of Air calculated from pressure and temperature : ($\mathrm{Function__ρ}$ call a function of CoolProp library internally) Specific enthalpy of Air calculated from pressure and temperature : ($\mathrm{Function__hflow}$ call a function of CoolProp library internally) Viscosity of Air calculated from pressure and temperature is : ($\mathrm{Function__μ}$ call a function of CoolProp library internally) Thermal conductivity of Air calculated from pressure and temperature is : ($\mathrm{Function__k}$ call a function of CoolProp library internally) Specific heat capacity at the constant pressure of Air calculated from pressure and temperature is : ($\mathrm{Function__c__p}$ call a function of CoolProp library internally) Reynolds number of Air calculated from pressure and temperature is : ( $\mathrm{Re}=\frac{\mathrm{ρ}\cdot \mathrm{Vin}\cdot X}{\mathrm{μ}}$, and $\mathrm{ρ}$ and $\mathrm{μ}$ is calculated from $\mathrm{pin}$ and $T$ ) Prandtl number of Air calculated from pressure and temperature is : ( $\mathrm{Pr}=\frac{\mathrm{c__p}\cdot \mathrm{μ}}{k}$, and $\mathrm{c__p}$ and $\mathrm{μ}$ and $k$ is calculated from $\mathrm{pin}$ and $T$ ) Grashof number of Air calculated from pressure and temperature is : ( $\mathrm{Gr}=\frac{g\cdot \mathrm{β}\cdot \left|T[1]-T[2]\right|\cdot {X}^{3}}{{\mathrm{μ}}^{2}}$, and $g=9.81$, $\mathrm{β}=\frac{1}{T}$$,\mathrm{μ}$ and $\mathrm{ρ}$ is calculated from $\mathrm{pin}$ and $T$ )
 Type of Media = Ideal Air (NASA Poly)   Density of Air calculated from pressure and temperature : $\mathrm{ρ}=\frac{\mathrm{pin}}{\mathrm{R__gas}\cdot \mathrm{Tin}\left[1\right]}$ Specific enthalpy of Air calculated from pressure and temperature : $\mathrm{hflow}=\mathrm{Function__hflow}\left(\mathrm{Tin}\left[1\right]\right)$ ($\mathrm{Function__hflow}$ call a function of a NASA Polynomial internally) Viscosity of Air calculated from pressure and temperature is : $\mathrm{μ}=\mathrm{Function__μ}\left(\mathrm{Tin}\left[1\right]\right)\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}\phantom{\rule[-0.0ex]{0.0em}{0.0ex}}$($\mathrm{Function__μ}$ call a fitted equation internally) Thermal conductivity of Air calculated from pressure and temperature is : ($\mathrm{Function__k}$ call a fitted equation internally) Specific heat capacity at the constant pressure of Air calculated from pressure and temperature is : $\mathrm{c__p}=\mathrm{Function__c__p}\left(\mathrm{Tin}\left[1\right]\right)$ ($\mathrm{Function__c__p}$ call a function of NASA Polynomial internally) Reynolds number of Air calculated from pressure and temperature is : ( $\mathrm{Re}=\frac{\mathrm{ρ}\cdot \mathrm{Vin}\cdot X}{\mathrm{μ}}$, and $\mathrm{ρ}$ and $\mathrm{μ}$ is calculated from $T$ ) Prandtl number of Air calculated from pressure and temperature is : ( $\mathrm{Pr}=\frac{\mathrm{c__p}\cdot \mathrm{μ}}{k}$, and $\mathrm{c__p}$ and $\mathrm{μ}$ and $k$ is calculated from $T$ ) Grashof number of Air calculated from pressure and temperature is : ( $\mathrm{Gr}=\frac{g\cdot \mathrm{β}\cdot \left|T[1]-T[2]\right|\cdot {X}^{3}}{{\mathrm{μ}}^{2}}$, and $g=9.81$, $\mathrm{β}=\frac{1}{T}$$,\mathrm{μ}$ and $\mathrm{ρ}$ is calculated from $T$ )
 Type of Media = Simple Air (Constant)   Density of Air calculated from pressure and temperature : $\mathrm{\rho }=\frac{\mathrm{pin}}{\mathrm{R__gas}\cdot \mathrm{Tin}\left[1\right]}$ Specific enthalpy of Air calculated from temperature : $\mathrm{hflow}=\mathrm{c__p}\cdot T+\mathrm{hflow__off}$ $\mathrm{hflow__off}=124648.4919$ Viscosity of Air is a constant. Thermal conductivity of Air is a constant $k$. Specific heat capacity at the constant pressure of Air is a constant $\mathrm{c__p}$. Reynolds number of Air is : $\mathrm{Re}\mathit{=}\frac{\mathrm{\rho }\cdot \mathrm{Vin}\cdot X}{\mathrm{μ}}$ Prandtl number of Air is : $\mathrm{Pr}=\frac{\mathrm{c__p}\cdot \mathrm{\mu }}{k}$ Grashof number of Air is : $\mathrm{Gr}=\frac{9.81\cdot \frac{1}{T}\cdot \left|T[1]-T[2]\right|\cdot {X}^{3}}{{\mathrm{\mu }}^{2}}$
 Type of Media = Water (IAPWS/IF97)   Density of Water calculated from pressure and temperature : ($\mathrm{Function__ρ}$ call a function of Modelica.Media.Water,IAPWS/IF97, internally) Specific enthalpy of Air calculated from pressure and temperature : ($\mathrm{Function__hflow}$ call a function of Modelica.Media.Water,IAPWS/IF97, internally) Viscosity of Air calculated from pressure and temperature is : ($\mathrm{Function__μ}$ call a function of Modelica.Media.Water,IAPWS/IF97, internally) Thermal conductivity of Air calculated from pressure and temperature is : ($\mathrm{Function__k}$ call a function of Modelica.Media.Water,IAPWS/IF97, internally) Specific heat capacity at the constant pressure of Air calculated from pressure and temperature is : ($\mathrm{Function__c__p}$ call a function of Modelica.Media.Water,IAPWS/IF97, internally) Reynolds number of Air calculated from pressure and temperature is : ( $\mathrm{Re}=\frac{\mathrm{ρ}\cdot \mathrm{Vin}\cdot X}{\mathrm{μ}}$, and $\mathrm{ρ}$ and $\mathrm{μ}$ is calculated from $\mathrm{pin}$ and $T$ ) Prandtl number of Air calculated from pressure and temperature is : ( $\mathrm{Pr}=\frac{\mathrm{c__p}\cdot \mathrm{μ}}{k}$, and $\mathrm{c__p}$ and $\mathrm{μ}$ and $k$ is calculated from $\mathrm{pin}$ and $T$ ) Grashof number of Air calculated from pressure and temperature is : ( $\mathrm{Gr}=\frac{g\cdot \mathrm{β}\cdot \left|T[1]-T[2]\right|\cdot {X}^{3}}{{\mathrm{μ}}^{2}}$, and $g=9.81$, $\mathrm{β}=\frac{1}{T}$$,\mathrm{μ}$ and $\mathrm{ρ}$ is calculated from $\mathrm{pin}$ and $T$ )
 Type of Media = Liquid water (Lookup table of IAPWS/IF97)   Density of Air calculated from pressure and temperature : ($\mathrm{LUT__ρ}$ is a lookup table which is generated with Modelica.Media.Water, IAPWS/IF97) Specific enthalpy of Air calculated from pressure and temperature : ($\mathrm{LUT__hflow}$ is a lookup table which is generated with Modelica.Media.Water, IAPWS/IF97) Viscosity of Air calculated from pressure and temperature is : ($\mathrm{LUT__μ}$ is a lookup table which is generated with Modelica.Media.Water, IAPWS/IF97) Thermal conductivity of Air calculated from pressure and temperature is : ($\mathrm{LUT__k}$ is a lookup table which is generated with Modelica.Media.Water, IAPWS/IF97) Specific heat capacity at the constant pressure of Air calculated from pressure and temperature is : ($\mathrm{LUT__c__p}$ is a lookup table which is generated with Modelica.Media.Water, IAPWS/IF97) Reynolds number of Air calculated from pressure and temperature is : $\mathrm{Re}\mathit{=}\frac{\mathrm{\rho }\cdot \mathrm{Vin}\cdot X}{\mathrm{μ}}$ Prandtl number of Air calculated from pressure and temperature is : $\mathrm{Pr}=\frac{\mathrm{c__p}\cdot \mathrm{\mu }}{}$) Grashof number of Air calculated from pressure and temperature is : $\mathrm{Gr}=\frac{g\cdot \mathrm{\beta }\cdot \left|T[1]-T[2]\right|\cdot {X}^{3}}{{\mathrm{\mu }}^{2}}$ $\mathrm{\beta }=\frac{1}{T}$
 Type of Media = Simple Air (Constant)   Density of Water calculated from pressure and temperature : $\mathrm{\rho }=\frac{\mathrm{pin}}{\mathrm{R__gas}\cdot \mathrm{Tin}\left[1\right]}$ Specific enthalpy of Water calculated from temperature : $\mathrm{hflow}=\mathrm{c__p}\cdot T+\mathrm{hflow__off}$ $\mathrm{hflow__off}=-1142798.49977$ Viscosity of Air is a constant. Thermal conductivity of Water is a constant $k$. Specific heat capacity at the constant pressure of Water is a constant $\mathrm{c__p}$. Reynolds number of Water is : $\mathrm{Re}\mathit{=}\frac{\mathrm{\rho }\cdot \mathrm{Vin}\cdot X}{\mathrm{μ}}$ Prandtl number of Water is : $\mathrm{Pr}=\frac{\mathrm{c__p}\cdot \mathrm{\mu }}{k}$ Grashof number of Water is : $\mathrm{Gr}=\frac{9.81\cdot \frac{1}{T}\cdot \left|T[1]-T[2]\right|\cdot {X}^{3}}{{\mathrm{\mu }}^{2}}$

Outputs are :

$\mathrm{out}\left[1\right]=\mathrm{ρ}$

$\mathrm{out}\left[2\right]=\mathrm{hflow}$

$\mathrm{out}\left[3\right]=\mathrm{\mu }$

$\mathrm{out}\left[4\right]=k$

$\mathrm{out}\left[5\right]=\mathrm{c__p}$

$\mathrm{out}\left[6\right]=\mathrm{Re}$

$\mathrm{out}\left[7\right]=\mathrm{Pr}$

$\mathrm{out}\left[8\right]=\mathrm{Gr}$

Variables

 Symbol Units Description Modelica ID $\mathrm{T__}$ $K$ Averaged temperature between Tin[1] and Tin[2] $\mathrm{ρ}$ $\frac{\mathrm{kg}}{{m}^{3}}$ Density of Air $\stackrel{}{\mathrm{μ}}$ $\frac{{m}^{2}}{s}$ Dynamic viscosity of Air $k$ $\frac{W}{m\cdot K}$ Thermal conductivity of Air $\mathrm{c__p}$ $\frac{J}{\mathrm{kg}\cdot K}$ Specific heat capacity at the constant pressure of Air $\mathrm{Re}$  Reynolds number $\mathrm{Pr}$  Prandtl number $\mathrm{Gr}$  Grashof number $g$ $\frac{m}{{s}^{2}}$ Acceleration of gravity $\mathrm{β}$ $\frac{1}{K}$ Volume coefficient of expansion

Connections

 Name Units Condition Description Modelica ID $\mathrm{pin}$ $\mathrm{Pa}$ - Pressure input pin $\mathrm{Tin}\left[2\right]$ $K$ - Temperature inputs Tin[2] $\mathrm{Vin}$ $\frac{m}{s}$ - Wind speed Vin $\mathrm{out}\left[8\right]$ - - Air fluid properties 1 : Density 2 : Specific enthalpy 3 : Dynamic viscosity 4 : Thermal conductivity 5 : Specific heat capacity at the constant pressure 6 : Reynolds number 7 : Prandtl number 8 : Grashof number out[8]

Parameters

 Symbol Default Units Description Modelica ID $-$ Select type of media  - Actual Air (CoolProp)  - Ideal Air (NASA Poly)  - Simple Air (Constant)  - Water (IAPWS/IF97)  - Liquid Water (Lookup table of IAPWS/IF97)  - Simple Water (Constant) TypeOfMedia $X$ $1.0$ $m$ Streamwise length X