SimpleLieAlgebraData Details - Maple Help
For the best experience, we recommend viewing online help using Google Chrome or Microsoft Edge.
Our website is currently undergoing maintenance, which may result in occasional errors while browsing. We apologize for any inconvenience this may cause and are working swiftly to restore full functionality. Thank you for your patience.

Online Help

All Products    Maple    MapleSim


Home : Support : Online Help : Mathematics : DifferentialGeometry : LieAlgebras : SimpleLieAlgebraData Details

Details for SimpleLieAlgebraData - definitions of the classical matrix algebras

 

Description

Examples

Description

The following two tables describe the Lie algebras which can be initialized with the command SimpleLieAlgebraData .

 

The Classical Simple Real Matrix Algebras

 

 

Name

Dim

Type

Rank

Matrices

Conditions

Examples

sl(n)

 n21

A

n 1

A

trA = 0

Example 1.

sun

n2 1

A

n1

Z = A1 +I A2

Z + Z = 0 , A1 + A1t = 0, A2  A2t = 0.

Example 2

sup,q

version 1

n2 1

A

 n1

Z1Z2Z3Z4Z1Z5Z5 Z3 Z6 = A1+IA2B1+ IB2 C1 + IC2D1 + I D2t A1+IA2t E1 +IE2E1 + IE2tC1 +C2t F1+IF2t

Z1, Z2 , Z4 q ×q ; Z3 , Z5 q×pq; Z6 pq×pq

Z1, Z3 ,Z5 arbitrary, Z2+Z2=0,Z4 +Z4=0,Z6 +Z6=0, trZ6= 0

 B1, D1, F1 skew-symmetric

 B2, D2, F2 symmetric

Example 3

 sup, q

version 2

n2 1 

n = p+q

A

n1

Z1 Z2Z2Z3= A1+ I A2B1 + I B2B1t  I B2t C1+IC2 

Z1 p×p, Z2 q×q,Z3 p×q 

Z1 + Z1 =0, Z3 + Z3 =0, trZ1 + trZ3 =0, Z2 arbitrary

A1 + A1t = 0, A2  A2t = 0, C1 + C1t = 0, C2  C2t =0, trA1 + trC1= 0

Example 3

su*n

n even

n2  1

A

n1

Z1Z2Z2 Z1 = A1 + I A2B1 + I B2B1 + I B2 A1  I A2

trZ1 + trZ1 = 0, trA1 =0.

Example 4

sop,q

p +q = n, n=2 m +1

version 1

12 nn1

B

m

ABCDAtEECtF

A, B, D q×q; C,E, q×pq; F pq×pq

A, C, E arbitrary

B+ Bt =0, D + Dt=0 , F + Ft=0

Example 5

sop,q

p +q = n, n=2 m +1

version 2

12 nn1

B

m

ABBtC

 

A p×p; B p×q; C q×q

A + At=0, C + Ct =0, B arbitrary

Example 5

spn, ℝ

n = 2 m

nn +1

C

m

ABCAt

A,B,C m×m

B  Bt =0, B  Bt =0

Example 6

spp, q

2 p +2 q = n

nn +1

C

m

Z1Z2Z3Z4Z2Z5Z4tZ6Z3Z4Z1Z2Z4 Z6Z2tZ5= A1 +IA2 B1 +IB2 C1 +IC2D1 +ID2B1t I B2tE1 +IE2D1t +ID2tF1 +IF2C1 +IC2D1 ID2A1  IA2B1 +IB2D1 +ID2F1 +IF2B1t +IB2tE1  IE2

Z1, Z3 p×p, Z2, Z4 p×q, Z5, Z6 q×q

Z1 +Z1 = 0, Z5 +Z5 =0, Z2, Z4 arbitrary

Z3  Z3t =0, Z6 Z6t = 0,

A1 +A1t =0, A2  A2t =0, E1 +E1t =0 , E2  E2t =0, 

C1  C1t =0, C1 + C1t =0, F1 F1t =0, F1 + F1t =0 

 

Example 7

spn

n = 2 m

nn+1

C

m

Z1Z2Z2Z1= A1 + IA2B1+ IB2B1+ IB2A1  IA2

Z1, Z2 m×m

Z1 + Z1 = 0, Z2  Z2t = 0,

A1 +A1t=0, A1 A1t=0, B1 B1t =0, B2 B2t =0, 

Example 7

sop, q

p +q = n

n=2 m

version 1

 

12 nn1

D

m

ABCDAtEECtF

A, B, D q×q; C,E, q×pq; F pq×pq

A, C, E arbitrary

B+ Bt =0, D + Dt=0 , F + Ft =0

 

Example 8

sop, q

p +q = n

 n=2 m +1

version 2

 

12 nn1

D

m

ABBtC

A p×p; B p×q; C q×q

A + At=0, C + Ct=0, B arbitrary

 

Example 9

so*n

n = 2 m

12 nn1

D

m

Z1Z2Z2 Z1 = A1+IA2 B1+I B2Bt +I B2tA1  IA2

Z1, Z2 m×m 

Z1 +Z1t =0, Z2  Z2 = 0

A1 +A1t =0, A2+A2t =0, B1B1t =0, B2 + B2t =0

Example 10 

 

The following algebras can also be initialized with the command SimpleLieAlgebraData .

 

Other Classical Real Matrix Algebras

 

Name

Dim

Matrices

Conditions

Examples

 

gln,ℝ

 n2

A

Z, A1 , A2 n×n

Example 11

gln, ℂ

 2 n2

Z = A1 + I A2

Z, A1 , A2 n×n

Example 11

sln,ℂ

2n2 1

Z = A1 + I A2

Z, A1 , A2 n×n

Z, A1 , A2 trace-free

Example 12

up, q

n2

Z1 Z2Z2Z3= A1+ I A2B1 + I B2B1t  I B2t C1+IC2 

Z1 p×p, Z2 q×q, Z3 p×q 

Z1 + Z1 =0, Z3+ Z3 =0, Z2 arbitrary

A1 + A1t = 0, A2  A2t = 0, C1 + C1t = 0, C2  C2t =0, 

Example 13

son,ℂ

 nn1

Z = [A1+IA2]

Z, A1 , A2 n×n

Z, A1, A2 skew-symmetric

Example 14

spn, ℂ

2 nn +1

Z1Z2Z3Z1t = A1 + IA2B1+IB2C1+IC2At  IA2t

Z1, Z2,Z3, A1, A2, B1, B2, C1, C2 n×n

Z2 + Z2t =0, Z3 + Z3t =0,

B1+B1t =0, B2+B2t =0, C1 +C1t =0, C2+C2t =0

 Example 15

soln

12nn+1

A

A n×n

upper triangular

Example 16

niln

12nn1

A

A n×n

strictly upper triangular

Example 17

 

 

Examples

 

withDifferentialGeometry:withLieAlgebras:

 

Example 1. sln

LD1SimpleLieAlgebraDatasl(3),sl3:

StandardRepresentationLD1

 

Example 2. sun

LD2SimpleLieAlgebraDatasu(3),su3:

StandardRepresentationLD2

 

Example 3. sup, q

LD3ISimpleLieAlgebraDatasu(3,1),su31I:

StandardRepresentationLD3I

LD3IISimpleLieAlgebraDatasu(3,1),su31II,version=2:

StandardRepresentationLD3II

 

Example 4. su*n

LD4SimpleLieAlgebraDatasu*(4),sus4:

StandardRepresentationLD4

 

Example 5. sop, q

LD5ISimpleLieAlgebraDataso(3,2),su32I:

StandardRepresentationLD5I

LD5IISimpleLieAlgebraDatasu(3,2),su32II,version=2:

StandardRepresentationLD3II

 

 

Example 6. spn, ℝ 

LD6SimpleLieAlgebraDatasp(4, R),sp4R:

StandardRepresentationLD6

 

Example 7. spp, q

LD7SimpleLieAlgebraDatasp(2, 2),sp22:

StandardRepresentationLD7

Example 8. spn

LD8SimpleLieAlgebraDatasp(4),sp4:

StandardRepresentationLD8

 

Example 9. sop,q

LD9ISimpleLieAlgebraDataso(3,1),so31:

StandardRepresentationLD9I

LD9IISimpleLieAlgebraDataso(3,1),so31,version=2:

StandardRepresentationLD9II

 

Example 10. so*n

LD10SimpleLieAlgebraDataso*(4),sos:

StandardRepresentationLD10

 

Example 11. gln, ℝ

LD11RSimpleLieAlgebraDatagl(2, R),gl2R:

StandardRepresentationLD11R

LD11CSimpleLieAlgebraDatagl(2, C),gl2C:

StandardRepresentationLD11C

 

Example 12. sln, ℂ

LD12SimpleLieAlgebraDatasl(2, C),sl2C:

StandardRepresentationLD12

 

Example 13. up, q

LD13SimpleLieAlgebraDatau(2,1),u21:

StandardRepresentationLD13

 

Example 14. son, ℂ

LD14SimpleLieAlgebraDataso(3, C),so3C:

StandardRepresentationLD14

 

Example 15. spn, ℂ

LD15SimpleLieAlgebraDatasp(4, C),sp4C:

StandardRepresentationLD15

 

Example 16. soln

LD16SimpleLieAlgebraDatasol(4),sol4:

StandardRepresentationLD16

 

Example 17. niln

LD17SimpleLieAlgebraDatanil(4),nil4:

StandardRepresentationLD17