geometry
median
find the median of a given triangle
Calling Sequence
Parameters
Description
Examples
median(mA, A, ABC, M)
mA

Amedian of ABC
A
vertex of ABC
ABC
triangle
M
(optional) name
The Amedian of triangle ABC is the cevian line through the midpoint of the side BC.
If the third optional argument M is given, the object returned a line segment AM where M is the midpoint of the side BC.
For a detailed description of the median mA, use the routine detail (i.e., detail(mA))
Note that the routine only works if the vertices of the triangle are known.
The command with(geometry,median) allows the use of the abbreviated form of this command.
$\mathrm{with}\left(\mathrm{geometry}\right)\:$
$\mathrm{triangle}\left(\mathrm{ABC}\,\left[\mathrm{point}\left(A\,0\,0\right)\,\mathrm{point}\left(B\,2\,0\right)\,\mathrm{point}\left(C\,1\,3\right)\right]\right)\:$
$\mathrm{median}\left(\mathrm{mA}\,A\,\mathrm{ABC}\right)$
${\mathrm{mA}}$
$\mathrm{form}\left(\mathrm{mA}\right)$
${\mathrm{line2d}}$
$\mathrm{detail}\left(\mathrm{mA}\right)$
assume that the names of the horizontal and vertical axes are _x and _y, respectively
$\begin{array}{ll}{\text{name of the object}}& {\mathrm{mA}}\\ {\text{form of the object}}& {\mathrm{line2d}}\\ {\text{equation of the line}}& {}\frac{{3}{}{\mathrm{\_x}}}{{2}}{+}\frac{{3}{}{\mathrm{\_y}}}{{2}}{=}{0}\end{array}$
$\mathrm{median}\left(\mathrm{mA}\,A\,\mathrm{ABC}\,M\right)$
${\mathrm{segment2d}}$
$\begin{array}{ll}{\text{name of the object}}& {\mathrm{mA}}\\ {\text{form of the object}}& {\mathrm{segment2d}}\\ {\text{the two ends of the segment}}& \left[\left[{0}{\,}{0}\right]{\,}\left[\frac{{3}}{{2}}{\,}\frac{{3}}{{2}}\right]\right]\end{array}$
See Also
geometry[altitude]
geometry[bisector]
geometry[triangle]
Download Help Document
What kind of issue would you like to report? (Optional)