Quasistationary Singlephase Impedance - MapleSim Help

Quasistationary Singlephase Impedance

Single phase linear impedance

 Description The Quasistationary Singlephase Impedance component connects the complex voltage $v$ with the complex current $i$ by $v=Zv$, where $Z$ is complex. The model includes a Conditional heat port and temperature dependency of the real part of the impedance.
 Equations $i={i}_{p}=-{i}_{n}$ $v={v}_{p}-{v}_{n}=\left({R}_{\mathrm{actual}}+j{X}_{\mathrm{ref}}\right)i$ ${R}_{\mathrm{actual}}={R}_{\mathrm{ref}}\left(1+{\mathrm{\alpha }}_{\mathrm{ref}}\left({T}_{\mathrm{hp}}-{T}_{\mathrm{ref}}\right)\right)$ $\mathrm{\omega }={\stackrel{.}{\mathrm{\gamma }}}_{p}$ ${\mathrm{\gamma }}_{p}={\mathrm{\gamma }}_{n}$ ${P}_{\mathrm{loss}}=\Re \left(v\stackrel{&conjugate0;}{i}\right)$ ${T}_{\mathrm{hp}}=\left\{\begin{array}{cc}{T}_{\mathrm{heatPort}}& \mathrm{Use Heat Port}\\ T& \mathrm{otherwise}\end{array}$

Variables

 Name Units Description Modelica ID $v$ $V$ Complex RMS voltage v $i$ $A$ Complex RMS current i $\mathrm{\omega }$ $\frac{\mathrm{rad}}{s}$ Angular frequency omega ${P}_{\mathrm{loss}}$ $W$ Loss power leaving component via the heat port LossPower ${T}_{\mathrm{hp}}$ $K$ Temperature of HeatPort T_heatPort ${R}_{\mathrm{actual}}$ $\Omega$ Resistance; temperature dependent R_actual

Connections

 Name Description Modelica ID ${\mathrm{pin}}_{p}$ Positive pin pin_p ${\mathrm{pin}}_{n}$ Negative pin pin_n $\mathrm{Heat Port}$ heatPort

Parameters

 Name Default Units Description Modelica ID ${Z}_{\mathrm{ref}}$ Complex impedance ${Z}_{\mathrm{ref}}={R}_{\mathrm{ref}}+j{X}_{\mathrm{ref}}$ Z_ref ${T}_{\mathrm{ref}}$ $293.15$ $K$ Reference temperature T_ref ${\mathrm{\alpha }}_{\mathrm{ref}}$ $0$ $\frac{1}{K}$ Temperature coefficient of resistance alpha_ref Use Heat Port $\mathrm{false}$ True (checked) means heat port is enabled useHeatPort $T$ ${T}_{\mathrm{ref}}$ $K$ Fixed device temperature if useHeatPort = false T Frequency dependent $\mathrm{false}$ Consider frequency dependency, if true frequencyDependent ${f}_{\mathrm{ref}}$ $1$ $\mathrm{Hz}$ Relative frequency, if frequency dependency is considered f_ref

 Modelica Standard Library The component described in this topic is from the Modelica Standard Library. To view the original documentation, which includes author and copyright information, click here.