Least Squares Approximation - Maple Help

# Online Help

###### All Products    Maple    MapleSim

Home : Support : Online Help : Tasks : Curve Fitting : Least Squares Approximation

Least Squares Approximation

 Description Calculate a least squares approximation using specified data points.

Least Squares Fit of Data by a Specified Curve

List of Data Points:

 > $\left[\left[{2}{,}{-}{1}\right]{,}\left[{4}{,}{3}\right]{,}\left[{6}{,}{-}{7}\right]{,}\left[{7}{,}{5}\right]{,}\left[{9}{,}{-}{2}\right]\right]$
 $\left[\left[{2}{,}{-}{1}\right]{,}\left[{4}{,}{3}\right]{,}\left[{6}{,}{-}{7}\right]{,}\left[{7}{,}{5}\right]{,}\left[{9}{,}{-}{2}\right]\right]$ (1)

Fitting Curve:

 > ${a}{{x}}^{{2}}{+}{b}{x}{+}{c}$
 ${a}{}{{x}}^{{2}}{+}{b}{}{x}{+}{c}$ (2)

Independent Variable:

 > ${x}$
 ${x}$ (3)

Least Squares Curve:

 > ${\mathrm{CurveFitting}}_{}\left[\mathrm{LeastSquares}\right]\left(,,\mathrm{curve}=\right);$
 ${-}\frac{{6315}}{{5071}}{+}\frac{{5975}}{{10142}}{}{x}{-}\frac{{669}}{{10142}}{}{{x}}^{{2}}$ (4)

 Commands Used
 See Also