Average Value of a Function in Polar Coordinates
Description
In the polar coordinate system, where the point x,y has coordinates r,θ=x2+y2, arctany,x, determine the average value of a function.
Integrand
θ1+r2
Region: r1θ≤r≤r2θ,a≤θ≤b
r1θ
0
r2θ
θ
θ
a
b
π3
13⁢π
Inert Integral: dr dθ
(Note automatic insertion of Jacobian.)
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ,output=integral
∫013⁢π∫0θθ⁢r1+r2ⅆrⅆθ∫013⁢π∫0θrⅆrⅆθ
Value
StudentMultivariateCalculusFunctionAverage,r=..,θ=..,coordinates=polarr,θ
162⁢−12⁢ln⁡3+14⁢ln⁡9+π2−118⁢π2⁢ln⁡3+136⁢π2⁢ln⁡9+π2−136⁢π2π3
Commands Used
Student[MultivariateCalculus][FunctionAverage]
See Also
Student[MultivariateCalculus], Student[MultivariateCalculus][MultiInt]
Download Help Document
What kind of issue would you like to report? (Optional)